Displaying 1 - 8 of 8
-
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Lopopolo, A., Van de Bosch, A., Petersson, K. M., & Willems, R. M. (2021). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language, 2(1), 152-175. doi:10.1162/nol_a_00029.
Abstract
Finding the structure of a sentence — the way its words hold together to convey meaning — is a fundamental step in language comprehension. Several brain regions, including the left inferior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal pole, are supposed to support this operation. The exact role of these areas is nonetheless still debated. In this paper we investigate the hypothesis that different brain regions could be sensitive to different kinds of syntactic computations. We compare the fit of phrase-structure and dependency structure descriptors to activity in brain areas using fMRI. Our results show a division between areas with regard to the type of structure computed, with the left ATP and left IFG favouring dependency structures and left pSTG favouring phrase structures. -
Andics, A., McQueen, J. M., & Petersson, K. M. (2013). Mean-based neural coding of voices. NeuroImage, 79, 351-360. doi:10.1016/j.neuroimage.2013.05.002.
Abstract
The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it has been proposed that voice recognition is supported by prototype-centered voice representations, the involvement of these category-selective cortical regions in the neural coding of such "mean voices" has not previously been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic) dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent (i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages, each characterized by neural mechanisms that reference the central tendencies of voice categories. -
Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.
Abstract
In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.Additional information
Kirstensen_Cer_Cor_Suppl_Mat.doc -
Nieuwenhuis, I. L., Folia, V., Forkstam, C., Jensen, O., & Petersson, K. M. (2013). Sleep promotes the extraction of grammatical rules. PLoS One, 8(6): e65046. doi:10.1371/journal.pone.0065046.
Abstract
Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep) or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1) the holistic abstraction of the underlying grammar rules and (2) the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired.Additional information
Appendix S2: Task instructions test phase Appendix S1: Task instructions exposure phase -
Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.
Abstract
Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.Additional information
Segaert_Supplementary_data_2013.docx -
Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.
Abstract
Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects. -
Whitmarsh, S., Udden, J., Barendregt, H., & Petersson, K. M. (2013). Mindfulness reduces habitual responding based on implicit knowledge: Evidence from artificial grammar learning. Consciousness and Cognition, (3), 833-845. doi:10.1016/j.concog.2013.05.007.
Abstract
Participants were unknowingly exposed to complex regularities in a working memory task. The existence of implicit knowledge was subsequently inferred from a preference for stimuli with similar grammatical regularities. Several affective traits have been shown to influence
AGL performance positively, many of which are related to a tendency for automatic responding. We therefore tested whether the mindfulness trait predicted a reduction of grammatically congruent preferences, and used emotional primes to explore the influence of affect. Mindfulness was shown to correlate negatively with grammatically congruent responses. Negative primes were shown to result in faster and more negative evaluations.
We conclude that grammatically congruent preference ratings rely on habitual responses, and that our findings provide empirical evidence for the non-reactive disposition of the mindfulness trait.
Share this page