Displaying 1 - 4 of 4
-
Quaresima, A., Fitz, H., Duarte, R., Van den Broek, D., Hagoort, P., & Petersson, K. M. (2023). The Tripod neuron: A minimal structural reduction of the dendritic tree. The Journal of Physiology, 601(15), 3007-3437. doi:10.1113/JP283399.
Abstract
Neuron models with explicit dendritic dynamics have shed light on mechanisms for coincidence detection, pathway selection and temporal filtering. However, it is still unclear which morphological and physiological features are required to capture these phenomena. In this work, we introduce the Tripod neuron model and propose a minimal structural reduction of the dendritic tree that is able to reproduce these computations. The Tripod is a three-compartment model consisting of two segregated passive dendrites and a somatic compartment modelled as an adaptive, exponential integrate-and-fire neuron. It incorporates dendritic geometry, membrane physiology and receptor dynamics as measured in human pyramidal cells. We characterize the response of the Tripod to glutamatergic and GABAergic inputs and identify parameters that support supra-linear integration, coincidence-detection and pathway-specific gating through shunting inhibition. Following NMDA spikes, the Tripod neuron generates plateau potentials whose duration depends on the dendritic length and the strength of synaptic input. When fitted with distal compartments, the Tripod encodes previous activity into a dendritic depolarized state. This dendritic memory allows the neuron to perform temporal binding, and we show that it solves transition and sequence detection tasks on which a single-compartment model fails. Thus, the Tripod can account for dendritic computations previously explained only with more detailed neuron models or neural networks. Due to its simplicity, the Tripod neuron can be used efficiently in simulations of larger cortical circuits. -
Silva, S., Inácio, F., Rocha e Sousa, D., Gaspar, N., Folia, V., & Petersson, K. M. (2023). Formal language hierarchy reflects different levels of cognitive complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(4), 642-660. doi:10.1037/xlm0001182.
Abstract
Formal language hierarchy describes levels of increasing syntactic complexity (adjacent dependencies, nonadjacent nested, nonadjacent crossed) of which the transcription into a hierarchy of cognitive complexity remains under debate. The cognitive foundations of formal language hierarchy have been contradicted by two types of evidence: First, adjacent dependencies are not easier to learn compared to nonadjacent; second, crossed nonadjacent dependencies may be easier than nested. However, studies providing these findings may have engaged confounds: Repetition monitoring strategies may have accounted for participants’ high performance in nonadjacent dependencies, and linguistic experience may have accounted for the advantage of crossed dependencies. We conducted two artificial grammar learning experiments where we addressed these confounds by manipulating reliance on repetition monitoring and by testing participants inexperienced with crossed dependencies. Results showed relevant differences in learning adjacent versus nonadjacent dependencies and advantages of nested over crossed, suggesting that formal language hierarchy may indeed translate into a hierarchy of cognitive complexity -
Udden, J., Hulten, A., Schoffelen, J.-M., Lam, N. H. L., Harbusch, K., Van den Bosch, A., Kempen, G., Petersson, K. M., & Hagoort, P. (2022). Supramodal sentence processing in the human brain: fMRI evidence for the influence of syntactic complexity in more than 200 participants. Neurobiology of Language, 3(4), 575-598. doi:10.1162/nol_a_00076.
Abstract
This study investigated two questions. One is: To what degree is sentence processing beyond single words independent of the input modality (speech vs. reading)? The second question is: Which parts of the network recruited by both modalities is sensitive to syntactic complexity? These questions were investigated by having more than 200 participants read or listen to well-formed sentences or series of unconnected words. A largely left-hemisphere frontotemporoparietal network was found to be supramodal in nature, i.e., independent of input modality. In addition, the left inferior frontal gyrus (LIFG) and the left posterior middle temporal gyrus (LpMTG) were most clearly associated with left-branching complexity. The left anterior temporal lobe (LaTL) showed the greatest sensitivity to sentences that differed in right-branching complexity. Moreover, activity in LIFG and LpMTG increased from sentence onset to end, in parallel with an increase of the left-branching complexity. While LIFG, bilateral anterior temporal lobe, posterior MTG, and left inferior parietal lobe (LIPL) all contribute to the supramodal unification processes, the results suggest that these regions differ in their respective contributions to syntactic complexity related processing. The consequences of these findings for neurobiological models of language processing are discussed.Additional information
supporting information -
Lopopolo, A., Van de Bosch, A., Petersson, K. M., & Willems, R. M. (2021). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language, 2(1), 152-175. doi:10.1162/nol_a_00029.
Abstract
Finding the structure of a sentence — the way its words hold together to convey meaning — is a fundamental step in language comprehension. Several brain regions, including the left inferior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal pole, are supposed to support this operation. The exact role of these areas is nonetheless still debated. In this paper we investigate the hypothesis that different brain regions could be sensitive to different kinds of syntactic computations. We compare the fit of phrase-structure and dependency structure descriptors to activity in brain areas using fMRI. Our results show a division between areas with regard to the type of structure computed, with the left ATP and left IFG favouring dependency structures and left pSTG favouring phrase structures.
Share this page