Displaying 1 - 2 of 2
-
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Lopopolo, A., Van de Bosch, A., Petersson, K. M., & Willems, R. M. (2021). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language, 2(1), 152-175. doi:10.1162/nol_a_00029.
Abstract
Finding the structure of a sentence — the way its words hold together to convey meaning — is a fundamental step in language comprehension. Several brain regions, including the left inferior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal pole, are supposed to support this operation. The exact role of these areas is nonetheless still debated. In this paper we investigate the hypothesis that different brain regions could be sensitive to different kinds of syntactic computations. We compare the fit of phrase-structure and dependency structure descriptors to activity in brain areas using fMRI. Our results show a division between areas with regard to the type of structure computed, with the left ATP and left IFG favouring dependency structures and left pSTG favouring phrase structures.
Share this page