Judith Holler

Publications

Displaying 1 - 12 of 12
  • Holler, J., Alday, P. M., Decuyper, C., Geiger, M., Kendrick, K. H., & Meyer, A. S. (2021). Competition reduces response times in multiparty conversation. Frontiers in Psychology, 12: 693124. doi:10.3389/fpsyg.2021.693124.

    Abstract

    Natural conversations are characterized by short transition times between turns. This holds in particular for multi-party conversations. The short turn transitions in everyday conversations contrast sharply with the much longer speech onset latencies observed in laboratory studies where speakers respond to spoken utterances. There are many factors that facilitate speech production in conversational compared to laboratory settings. Here we highlight one of them, the impact of competition for turns. In multi-party conversations, speakers often compete for turns. In quantitative corpus analyses of multi-party conversation, the fastest response determines the recorded turn transition time. In contrast, in dyadic conversations such competition for turns is much less likely to arise, and in laboratory experiments with individual participants it does not arise at all. Therefore, all responses tend to be recorded. Thus, competition for turns may reduce the recorded mean turn transition times in multi-party conversations for a simple statistical reason: slow responses are not included in the means. We report two studies illustrating this point. We first report the results of simulations showing how much the response times in a laboratory experiment would be reduced if, for each trial, instead of recording all responses, only the fastest responses of several participants responding independently on the trial were recorded. We then present results from a quantitative corpus analysis comparing turn transition times in dyadic and triadic conversations. There was no significant group size effect in question-response transition times, where the present speaker often selects the next one, thus reducing competition between speakers. But, as predicted, triads showed shorter turn transition times than dyads for the remaining turn transitions, where competition for the floor was more likely to arise. Together, these data show that turn transition times in conversation should be interpreted in the context of group size, turn transition type, and social setting.
  • Humphries, S., Holler*, J., Crawford, T., & Poliakoff*, E. (2021). Cospeech gestures are a window into the effects of Parkinson’s disease on action representations. Journal of Experimental Psychology: General, 150(8), 1581-1597. doi:10.1037/xge0001002.

    Abstract

    -* indicates joint senior authors - Parkinson’s disease impairs motor function and cognition, which together affect language and
    communication. Co-speech gestures are a form of language-related actions that provide imagistic
    depictions of the speech content they accompany. Gestures rely on visual and motor imagery, but
    it is unknown whether gesture representations require the involvement of intact neural sensory
    and motor systems. We tested this hypothesis with a fine-grained analysis of co-speech action
    gestures in Parkinson’s disease. 37 people with Parkinson’s disease and 33 controls described
    two scenes featuring actions which varied in their inherent degree of bodily motion. In addition
    to the perspective of action gestures (gestural viewpoint/first- vs. third-person perspective), we
    analysed how Parkinson’s patients represent manner (how something/someone moves) and path
    information (where something/someone moves to) in gesture, depending on the degree of bodily
    motion involved in the action depicted. We replicated an earlier finding that people with
    Parkinson’s disease are less likely to gesture about actions from a first-person perspective – preferring instead to depict actions gesturally from a third-person perspective – and show that
    this effect is modulated by the degree of bodily motion in the actions being depicted. When
    describing high motion actions, the Parkinson’s group were specifically impaired in depicting
    manner information in gesture and their use of third-person path-only gestures was significantly
    increased. Gestures about low motion actions were relatively spared. These results inform our
    understanding of the neural and cognitive basis of gesture production by providing
    neuropsychological evidence that action gesture production relies on intact motor network
    function.

    Additional information

    Open data and code
  • Nota, N., Trujillo, J. P., & Holler, J. (2021). Facial signals and social actions in multimodal face-to-face interaction. Brain Sciences, 11(8): 1017. doi:10.3390/brainsci11081017.

    Abstract

    In a conversation, recognising the speaker’s social action (e.g., a request) early may help the potential following speakers understand the intended message quickly, and plan a timely response. Human language is multimodal, and several studies have demonstrated the contribution of the body to communication. However, comparatively few studies have investigated (non-emotional) conversational facial signals and very little is known about how they contribute to the communication of social actions. Therefore, we investigated how facial signals map onto the expressions of two fundamental social actions in conversations: asking questions and providing responses. We studied the distribution and timing of 12 facial signals across 6778 questions and 4553 responses, annotated holistically in a corpus of 34 dyadic face-to-face Dutch conversations. Moreover, we analysed facial signal clustering to find out whether there are specific combinations of facial signals within questions or responses. Results showed a high proportion of facial signals, with a qualitatively different distribution in questions versus responses. Additionally, clusters of facial signals were identified. Most facial signals occurred early in the utterance, and had earlier onsets in questions. Thus, facial signals may critically contribute to the communication of social actions in conversation by providing social action-specific visual information.
  • Pouw, W., Proksch, S., Drijvers, L., Gamba, M., Holler, J., Kello, C., Schaefer, R. S., & Wiggins, G. A. (2021). Multilevel rhythms in multimodal communication. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200334. doi:10.1098/rstb.2020.0334.

    Abstract

    It is now widely accepted that the brunt of animal communication is conducted via several modalities, e.g. acoustic and visual, either simultaneously or sequentially. This is a laudable multimodal turn relative to traditional accounts of temporal aspects of animal communication which have focused on a single modality at a time. However, the fields that are currently contributing to the study of multimodal communication are highly varied, and still largely disconnected given their sole focus on a particular level of description or their particular concern with human or non-human animals. Here, we provide an integrative overview of converging findings that show how multimodal processes occurring at neural, bodily, as well as social interactional levels each contribute uniquely to the complex rhythms that characterize communication in human and non-human animals. Though we address findings for each of these levels independently, we conclude that the most important challenge in this field is to identify how processes at these different levels connect.
  • Pronina, M., Hübscher, I., Holler, J., & Prieto, P. (2021). Interactional training interventions boost children’s expressive pragmatic abilities: Evidence from a novel multidimensional testing approach. Cognitive Development, 57: 101003. doi:10.1016/j.cogdev.2020.101003.

    Abstract

    This study investigates the effectiveness of training preschoolers in order to enhance their social cognition and pragmatic skills. Eighty-three 3–4-year-olds were divided into three groups and listened to stories enriched with mental state terms. Then, whereas the control group engaged in non-reflective activities, the two experimental groups were guided by a trainer to reflect on mental states depicted in the stories. In one of these groups, the children were prompted to not only talk about these states but also “embody” them through prosodic and gestural cues. Results showed that while there were no significant effects on Theory of Mind, emotion understanding, and mental state verb comprehension, the experimental groups significantly improved their pragmatic skill scores pretest-to-posttest. These results suggest that interactional interventions can contribute to preschoolers’ pragmatic development, demonstrate the value of the new embodied training, and highlight the importance of multidimensional testing for the evaluation of intervention effects.
  • Schubotz, L., Holler, J., Drijvers, L., & Ozyurek, A. (2021). Aging and working memory modulate the ability to benefit from visible speech and iconic gestures during speech-in-noise comprehension. Psychological Research, 85, 1997-2011. doi:10.1007/s00426-020-01363-8.

    Abstract

    When comprehending speech-in-noise (SiN), younger and older adults benefit from seeing the speaker’s mouth, i.e. visible speech. Younger adults additionally benefit from manual iconic co-speech gestures. Here, we investigate to what extent younger and older adults benefit from perceiving both visual articulators while comprehending SiN, and whether this is modulated by working memory and inhibitory control. Twenty-eight younger and 28 older adults performed a word recognition task in three visual contexts: mouth blurred (speech-only), visible speech, or visible speech + iconic gesture. The speech signal was either clear or embedded in multitalker babble. Additionally, there were two visual-only conditions (visible speech, visible speech + gesture). Accuracy levels for both age groups were higher when both visual articulators were present compared to either one or none. However, older adults received a significantly smaller benefit than younger adults, although they performed equally well in speech-only and visual-only word recognition. Individual differences in verbal working memory and inhibitory control partly accounted for age-related performance differences. To conclude, perceiving iconic gestures in addition to visible speech improves younger and older adults’ comprehension of SiN. Yet, the ability to benefit from this additional visual information is modulated by age and verbal working memory. Future research will have to show whether these findings extend beyond the single word level.

    Additional information

    supplementary material
  • Trujillo, J. P., & Holler, J. (2021). The kinematics of social action: Visual signals provide cues for what interlocutors do in conversation. Brain Sciences, 11: 996. doi:10.3390/brainsci11080996.

    Abstract

    During natural conversation, people must quickly understand the meaning of what the other speaker is saying. This concerns not just the semantic content of an utterance, but also the social action (i.e., what the utterance is doing—requesting information, offering, evaluating, checking mutual understanding, etc.) that the utterance is performing. The multimodal nature of human language raises the question of whether visual signals may contribute to the rapid processing of such social actions. However, while previous research has shown that how we move reveals the intentions underlying instrumental actions, we do not know whether the intentions underlying fine-grained social actions in conversation are also revealed in our bodily movements. Using a corpus of dyadic conversations combined with manual annotation and motion tracking, we analyzed the kinematics of the torso, head, and hands during the asking of questions. Manual annotation categorized these questions into six more fine-grained social action types (i.e., request for information, other-initiated repair, understanding check, stance or sentiment, self-directed, active participation). We demonstrate, for the first time, that the kinematics of the torso, head and hands differ between some of these different social action categories based on a 900 ms time window that captures movements starting slightly prior to or within 600 ms after utterance onset. These results provide novel insights into the extent to which our intentions shape the way that we move, and provide new avenues for understanding how this phenomenon may facilitate the fast communication of meaning in conversational interaction, social action, and conversation

    Additional information

    analyses scripts
  • Trujillo, J. P., Ozyurek, A., Holler, J., & Drijvers, L. (2021). Speakers exhibit a multimodal Lombard effect in noise. Scientific Reports, 11: 16721. doi:10.1038/s41598-021-95791-0.

    Abstract

    In everyday conversation, we are often challenged with communicating in non-ideal settings, such as in noise. Increased speech intensity and larger mouth movements are used to overcome noise in constrained settings (the Lombard effect). How we adapt to noise in face-to-face interaction, the natural environment of human language use, where manual gestures are ubiquitous, is currently unknown. We asked Dutch adults to wear headphones with varying levels of multi-talker babble while attempting to communicate action verbs to one another. Using quantitative motion capture and acoustic analyses, we found that (1) noise is associated with increased speech intensity and enhanced gesture kinematics and mouth movements, and (2) acoustic modulation only occurs when gestures are not present, while kinematic modulation occurs regardless of co-occurring speech. Thus, in face-to-face encounters the Lombard effect is not constrained to speech but is a multimodal phenomenon where the visual channel carries most of the communicative burden.

    Additional information

    supplementary material
  • Trujillo, J. P., Levinson, S. C., & Holler, J. (2021). Visual information in computer-mediated interaction matters: Investigating the association between the availability of gesture and turn transition timing in conversation. In M. Kurosu (Ed.), Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021 (pp. 643-657). Cham: Springer. doi:10.1007/978-3-030-78468-3_44.

    Abstract

    Natural human interaction involves the fast-paced exchange of speaker turns. Crucially, if a next speaker waited with planning their turn until the current speaker was finished, language production models would predict much longer turn transition times than what we observe. Next speakers must therefore prepare their turn in parallel to listening. Visual signals likely play a role in this process, for example by helping the next speaker to process the ongoing utterance and thus prepare an appropriately-timed response.

    To understand how visual signals contribute to the timing of turn-taking, and to move beyond the mostly qualitative studies of gesture in conversation, we examined unconstrained, computer-mediated conversations between 20 pairs of participants while systematically manipulating speaker visibility. Using motion tracking and manual gesture annotation, we assessed 1) how visibility affected the timing of turn transitions, and 2) whether use of co-speech gestures and 3) the communicative kinematic features of these gestures were associated with changes in turn transition timing.

    We found that 1) decreased visibility was associated with less tightly timed turn transitions, and 2) the presence of gestures was associated with more tightly timed turn transitions across visibility conditions. Finally, 3) structural and salient kinematics contributed to gesture’s facilitatory effect on turn transition times.

    Our findings suggest that speaker visibility--and especially the presence and kinematic form of gestures--during conversation contributes to the temporal coordination of conversational turns in computer-mediated settings. Furthermore, our study demonstrates that it is possible to use naturalistic conversation and still obtain controlled results.
  • Holler, J., Kendrick, K. H., Casillas, M., & Levinson, S. C. (Eds.). (2016). Turn-Taking in Human Communicative Interaction. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-825-2.

    Abstract

    The core use of language is in face-to-face conversation. This is characterized by rapid turn-taking. This turn-taking poses a number central puzzles for the psychology of language.

    Consider, for example, that in large corpora the gap between turns is on the order of 100 to 300 ms, but the latencies involved in language production require minimally between 600ms (for a single word) or 1500 ms (for as simple sentence). This implies that participants in conversation are predicting the ends of the incoming turn and preparing in advance. But how is this done? What aspects of this prediction are done when? What happens when the prediction is wrong? What stops participants coming in too early? If the system is running on prediction, why is there consistently a mode of 100 to 300 ms in response time?

    The timing puzzle raises further puzzles: it seems that comprehension must run parallel with the preparation for production, but it has been presumed that there are strict cognitive limitations on more than one central process running at a time. How is this bottleneck overcome? Far from being 'easy' as some psychologists have suggested, conversation may be one of the most demanding cognitive tasks in our everyday lives. Further questions naturally arise: how do children learn to master this demanding task, and what is the developmental trajectory in this domain?

    Research shows that aspects of turn-taking such as its timing are remarkably stable across languages and cultures, but the word order of languages varies enormously. How then does prediction of the incoming turn work when the verb (often the informational nugget in a clause) is at the end? Conversely, how can production work fast enough in languages that have the verb at the beginning, thereby requiring early planning of the whole clause? What happens when one changes modality, as in sign languages -- with the loss of channel constraints is turn-taking much freer? And what about face-to-face communication amongst hearing individuals -- do gestures, gaze, and other body behaviors facilitate turn-taking? One can also ask the phylogenetic question: how did such a system evolve? There seem to be parallels (analogies) in duetting bird species, and in a variety of monkey species, but there is little evidence of anything like this among the great apes.

    All this constitutes a neglected set of problems at the heart of the psychology of language and of the language sciences. This research topic welcomes contributions from right across the board, for example from psycholinguists, developmental psychologists, students of dialogue and conversation analysis, linguists interested in the use of language, phoneticians, corpus analysts and comparative ethologists or psychologists. We welcome contributions of all sorts, for example original research papers, opinion pieces, and reviews of work in subfields that may not be fully understood in other subfields.
  • Humphries, S., Holler, J., Crawford, T. J., Herrera, E., & Poliakoff, E. (2016). A third-person perspective on co-speech action gestures in Parkinson’s disease. Cortex, 78, 44-54. doi:10.1016/j.cortex.2016.02.009.

    Abstract

    A combination of impaired motor and cognitive function in Parkinson’s disease (PD) can impact on language and communication, with patients exhibiting a particular difficulty processing action verbs. Co-speech gestures embody a link between action and language and contribute significantly to communication in healthy people. Here, we investigated how co-speech gestures depicting actions are affected in PD, in particular with respect to the visual perspective—or the viewpoint – they depict. Gestures are closely related to mental imagery and motor simulations, but people with PD may be impaired in the way they simulate actions from a first-person perspective and may compensate for this by relying more on third-person visual features. We analysed the action-depicting gestures produced by mild-moderate PD patients and age-matched controls on an action description task and examined the relationship between gesture viewpoint, action naming, and performance on an action observation task (weight judgement). Healthy controls produced the majority of their action gestures from a first-person perspective, whereas PD patients produced a greater proportion of gestures produced from a third-person perspective. We propose that this reflects a compensatory reliance on third-person visual features in the simulation of actions in PD. Performance was also impaired in action naming and weight judgement, although this was unrelated to gesture viewpoint. Our findings provide a more comprehensive understanding of how action-language impairments in PD impact on action communication, on the cognitive underpinnings of this impairment, as well as elucidating the role of action simulation in gesture production
  • Rowbotham, S. J., Holler, J., Wearden, A., & Lloyd, D. M. (2016). I see how you feel: Recipients obtain additional information from speakers’ gestures about pain. Patient Education and Counseling, 99(8), 1333-1342. doi:10.1016/j.pec.2016.03.007.

    Abstract

    Objective

    Despite the need for effective pain communication, pain is difficult to verbalise. Co-speech gestures frequently add information about pain that is not contained in the accompanying speech. We explored whether recipients can obtain additional information from gestures about the pain that is being described.
    Methods

    Participants (n = 135) viewed clips of pain descriptions under one of four conditions: 1) Speech Only; 2) Speech and Gesture; 3) Speech, Gesture and Face; and 4) Speech, Gesture and Face plus Instruction (short presentation explaining the pain information that gestures can depict). Participants provided free-text descriptions of the pain that had been described. Responses were scored for the amount of information obtained from the original clips.
    Findings

    Participants in the Instruction condition obtained the most information, while those in the Speech Only condition obtained the least (all comparisons p<.001).
    Conclusions

    Gestures produced during pain descriptions provide additional information about pain that recipients are able to pick up without detriment to their uptake of spoken information.
    Practice implications

    Healthcare professionals may benefit from instruction in gestures to enhance uptake of information about patients’ pain experiences.

Share this page