Publications

Displaying 1 - 5 of 5
  • Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.

    Abstract

    Language processing involves the ability to store and integrate pieces of
    information in working memory over short periods of time. According to
    the dominant view, information is maintained through sustained, elevated
    neural activity. Other work has argued that short-term synaptic facilitation
    can serve as a substrate of memory. Here, we propose an account where
    memory is supported by intrinsic plasticity that downregulates neuronal
    firing rates. Single neuron responses are dependent on experience and we
    show through simulations that these adaptive changes in excitability pro-
    vide memory on timescales ranging from milliseconds to seconds. On this
    account, spiking activity writes information into coupled dynamic variables
    that control adaptation and move at slower timescales than the membrane
    potential. From these variables, information is continuously read back into
    the active membrane state for processing. This neuronal memory mech-
    anism does not rely on persistent activity, excitatory feedback, or synap-
    tic plasticity for storage. Instead, information is maintained in adaptive
    conductances that reduce firing rates and can be accessed directly with-
    out cued retrieval. Memory span is systematically related to both the time
    constant of adaptation and baseline levels of neuronal excitability. Inter-
    ference effects within memory arise when adaptation is long-lasting. We
    demonstrate that this mechanism is sensitive to context and serial order
    which makes it suitable for temporal integration in sequence processing
    within the language domain. We also show that it enables the binding of
    linguistic features over time within dynamic memory registers. This work
    provides a step towards a computational neurobiology of language.
  • Chang, F., & Fitz, H. (2014). Computational models of sentence production: A dual-path approach. In M. Goldrick, & M. Miozzo (Eds.), The Oxford handbook of language production (pp. 70-89). Oxford: Oxford University Press.

    Abstract

    Sentence production is the process we use to create language-specific sentences that convey particular meanings. In production, there are complex interactions between meaning, words, and syntax at different points in sentences. Computational models can make these interactions explicit and connectionist learning algorithms have been useful for building such models. Connectionist models use domaingeneral mechanisms to learn internal representations and these mechanisms can also explain evidence of long-term syntactic adaptation in adult speakers. This paper will review work showing that these models can generalize words in novel ways and learn typologically-different languages like English and Japanese. It will also present modeling work which shows that connectionist learning algorithms can account for complex sentence production in children and adult production phenomena like structural priming, heavy NP shift, and conceptual/lexical accessibility.
  • Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.

    Abstract

    Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences
  • Brouwer, H., Fitz, H., & Hoeks, J. C. (2010). Modeling the noun phrase versus sentence coordination ambiguity in Dutch: Evidence from Surprisal Theory. In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010 (pp. 72-80). Association for Computational Linguistics.

    Abstract

    This paper investigates whether surprisal theory can account for differential processing difficulty in the NP-/S-coordination ambiguity in Dutch. Surprisal is estimated using a Probabilistic Context-Free Grammar (PCFG), which is induced from an automatically annotated corpus. We find that our lexicalized surprisal model can account for the reading time data from a classic experiment on this ambiguity by Frazier (1987). We argue that syntactic and lexical probabilities, as specified in a PCFG, are sufficient to account for what is commonly referred to as an NP-coordination preference.
  • Fitz, H. (2010). Statistical learning of complex questions. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2692-2698). Austin, TX: Cognitive Science Society.

    Abstract

    The problem of auxiliary fronting in complex polar questions occupies a prominent position within the nature versus nurture controversy in language acquisition. We employ a model of statistical learning which uses sequential and semantic information to produce utterances from a bag of words. This linear learner is capable of generating grammatical questions without exposure to these structures in its training environment. We also demonstrate that the model performs superior to n-gram learners on this task. Implications for nativist theories of language acquisition are discussed.

Share this page