Publications

Displaying 1 - 4 of 4
  • Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.

    Abstract

    The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language.
  • Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. doi:10.1016/j.cognition.2017.05.008.

    Abstract

    Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions
  • Brouwer, H., Fitz, H., & Hoeks, J. C. (2010). Modeling the noun phrase versus sentence coordination ambiguity in Dutch: Evidence from Surprisal Theory. In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010 (pp. 72-80). Association for Computational Linguistics.

    Abstract

    This paper investigates whether surprisal theory can account for differential processing difficulty in the NP-/S-coordination ambiguity in Dutch. Surprisal is estimated using a Probabilistic Context-Free Grammar (PCFG), which is induced from an automatically annotated corpus. We find that our lexicalized surprisal model can account for the reading time data from a classic experiment on this ambiguity by Frazier (1987). We argue that syntactic and lexical probabilities, as specified in a PCFG, are sufficient to account for what is commonly referred to as an NP-coordination preference.
  • Fitz, H. (2010). Statistical learning of complex questions. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2692-2698). Austin, TX: Cognitive Science Society.

    Abstract

    The problem of auxiliary fronting in complex polar questions occupies a prominent position within the nature versus nurture controversy in language acquisition. We employ a model of statistical learning which uses sequential and semantic information to produce utterances from a bag of words. This linear learner is capable of generating grammatical questions without exposure to these structures in its training environment. We also demonstrate that the model performs superior to n-gram learners on this task. Implications for nativist theories of language acquisition are discussed.

Share this page