Displaying 1 - 4 of 4
-
Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.
Abstract
Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence. -
Chang, F., Bauman, M., Pappert, S., & Fitz, H. (2015). Do lemmas speak German?: A verb position effect in German structural priming. Cognitive Science, 39(5), 1113-1130. doi:10.1111/cogs.12184.
Abstract
Lexicalized theories of syntax often assume that verb-structure regularities are mediated by lemmas, which abstract over variation in verb tense and aspect. German syntax seems to challenge this assumption, because verb position depends on tense and aspect. To examine how German speakers link these elements, a structural priming study was performed which varied syntactic structure, verb position (encoded by tense and aspect), and verb overlap. Abstract structural priming was found, both within and across verb position, but priming was larger when the verb position was the same between prime and target. Priming was boosted by verb overlap, but there was no interaction with verb position. The results can be explained by a lemma model where tense and aspect are linked to structural choices in German. Since the architecture of this lemma model is not consistent with results from English, a connectionist model was developed which could explain the cross-linguistic variation in the production system. Together, these findings support the view that language learning plays an important role in determining the nature of structural priming in different languages -
Fitz, H., Chang, F., & Christansen, M. H. (2011). A connectionist account of the acquisition and processing of relative clauses. In E. Kidd (
Ed. ), The acquisition of relative clauses. Processing, typology and function (pp. 39-60). Amsterdam: Benjamins.Abstract
Relative clause processing depends on the grammatical role of the head noun in the subordinate clause. This has traditionally been explained in terms of cognitive limitations. We suggest that structure-related processing differences arise from differences in experience with these structures. We present a connectionist model which learns to produce utterances with relative clauses from exposure to message-sentence pairs. The model shows how various factors such as frequent subsequences, structural variations, and meaning conspire to create differences in the processing of these structures. The predictions of this learning-based account have been confirmed in behavioral studies with adults. This work shows that structural regularities that govern relative clause processing can be explained within a usage-based approach to recursion. -
Fitz, H. (2011). A liquid-state model of variability effects in learning nonadjacent dependencies. In L. Carlson, C. Hölscher, & T. Shipley (
Eds. ), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 897-902). Austin, TX: Cognitive Science Society.Abstract
Language acquisition involves learning nonadjacent dependencies that can obtain between words in a sentence. Several artificial grammar learning studies have shown that the ability of adults and children to detect dependencies between A and B in frames AXB is influenced by the amount of variation in the X element. This paper presents a model of statistical learning which displays similar behavior on this task and generalizes in a human-like way. The model was also used to predict human behavior for increased distance and more variation in dependencies. We compare our model-based approach with the standard invariance account of the variability effect.
Share this page