Displaying 1 - 5 of 5
-
Frank, S. L., & Fitz, H. (2016). Reservoir computing and the Sooner-is-Better bottleneck [Commentary on Christiansen & Slater]. Behavioral and Brain Sciences, 39: e73. doi:10.1017/S0140525X15000783.
Abstract
Prior language input is not lost but integrated with the current input. This principle is demonstrated by “reservoir computing”: Untrained recurrent neural networks project input sequences onto a random point in high-dimensional state space. Earlier inputs can be retrieved from this projection, albeit less reliably so as more input is received. The bottleneck is therefore not “Now-or-Never” but “Sooner-is-Better. -
Poletiek, F. H., Fitz, H., & Bocanegra, B. R. (2016). What baboons can (not) tell us about natural language grammars. Cognition, 151, 108-112. doi:10.1016/j.cognition.2015.04.016.
Abstract
Rey et al. (2012) present data from a study with baboons that they interpret in support of the idea that center-embedded structures in human language have their origin in low level memory mechanisms and associative learning. Critically, the authors claim that the baboons showed a behavioral preference that is consistent with center-embedded sequences over other types of sequences. We argue that the baboons’ response patterns suggest that two mechanisms are involved: first, they can be trained to associate a particular response with a particular stimulus, and, second, when faced with two conditioned stimuli in a row, they respond to the most recent one first, copying behavior they had been rewarded for during training. Although Rey et al. (2012) ‘experiment shows that the baboons’ behavior is driven by low level mechanisms, it is not clear how the animal behavior reported, bears on the phenomenon of Center Embedded structures in human syntax. Hence, (1) natural language syntax may indeed have been shaped by low level mechanisms, and (2) the baboons’ behavior is driven by low level stimulus response learning, as Rey et al. propose. But is the second evidence for the first? We will discuss in what ways this study can and cannot give evidential value for explaining the origin of Center Embedded recursion in human grammar. More generally, their study provokes an interesting reflection on the use of animal studies in order to understand features of the human linguistic system. -
Chang, F., Bauman, M., Pappert, S., & Fitz, H. (2015). Do lemmas speak German?: A verb position effect in German structural priming. Cognitive Science, 39(5), 1113-1130. doi:10.1111/cogs.12184.
Abstract
Lexicalized theories of syntax often assume that verb-structure regularities are mediated by lemmas, which abstract over variation in verb tense and aspect. German syntax seems to challenge this assumption, because verb position depends on tense and aspect. To examine how German speakers link these elements, a structural priming study was performed which varied syntactic structure, verb position (encoded by tense and aspect), and verb overlap. Abstract structural priming was found, both within and across verb position, but priming was larger when the verb position was the same between prime and target. Priming was boosted by verb overlap, but there was no interaction with verb position. The results can be explained by a lemma model where tense and aspect are linked to structural choices in German. Since the architecture of this lemma model is not consistent with results from English, a connectionist model was developed which could explain the cross-linguistic variation in the production system. Together, these findings support the view that language learning plays an important role in determining the nature of structural priming in different languages -
Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: Rethinking the functional role of the P600 in language comprehension. Brain Research, 1446, 127-143. doi:10.1016/j.brainres.2012.01.055.
Abstract
In traditional theories of language comprehension, syntactic and semantic processing are inextricably linked. This assumption has been challenged by the ‘Semantic Illusion Effect’ found in studies using Event Related brain Potentials. Semantically anomalous sentences did not produce the expected increase in N400 amplitude but rather one in P600 amplitude. To explain these findings, complex models have been devised in which an independent semantic processing stream can arrive at a sentence interpretation that may differ from the interpretation prescribed by the syntactic structure of the sentence. We review five such multi-stream models and argue that they do not account for the full range of relevant results because they assume that the amplitude of the N400 indexes some form of semantic integration. Based on recent evidence we argue that N400 amplitude might reflect the retrieval of lexical information from memory. On this view, the absence of an N400-effect in Semantic Illusion sentences can be explained in terms of priming. Furthermore, we suggest that semantic integration, which has previously been linked to the N400 component, might be reflected in the P600 instead. When combined, these functional interpretations result in a single-stream account of language processing that can explain all of the Semantic Illusion data. -
Chang, F., Janciauskas, M., & Fitz, H. (2012). Language adaptation and learning: Getting explicit about implicit learning. Language and Linguistics Compass, 6, 259-278. doi:10.1002/lnc3.337.
Abstract
Linguistic adaptation is a phenomenon where language representations change in response to linguistic input. Adaptation can occur on multiple linguistic levels such as phonology (tuning of phonotactic constraints), words (repetition priming), and syntax (structural priming). The persistent nature of these adaptations suggests that they may be a form of implicit learning and connectionist models have been developed which instantiate this hypothesis. Research on implicit learning, however, has also produced evidence that explicit chunk knowledge is involved in the performance of these tasks. In this review, we examine how these interacting implicit and explicit processes may change our understanding of language learning and processing.
Share this page