Displaying 1 - 6 of 6
-
Eichert, N., Peeters, D., & Hagoort, P. (2018). Language-driven anticipatory eye movements in virtual reality. Behavior Research Methods, 50(3), 1102-1115. doi:10.3758/s13428-017-0929-z.
Abstract
Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. The use of this variant of the visual world paradigm has shown that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional (2D) stimuli that are mere abstractions of real world objects. Here we present a visual world paradigm study in a three-dimensional (3D) immersive virtual reality environment. Despite significant changes in the stimulus material and the different mode of stimulus presentation, language-mediated anticipatory eye movements were observed. These findings thus indicate prediction of upcoming words in language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eye-tracking in rich and multimodal 3D virtual environments.Additional information
13428_2017_929_MOESM1_ESM.docx -
Peeters, D. (2018). A standardized set of 3D-objects for virtual reality research and applications. Behavior Research Methods, 50(3), 1047-1054. doi:10.3758/s13428-017-0925-3.
Abstract
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theory in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3D-objects for virtual reality research is important, as reaching valid theoretical conclusions critically hinges on the use of well controlled experimental stimuli. Sharing standardized 3D-objects across different virtual reality labs will allow for science to move forward more quickly. -
Peeters, D., & Dijkstra, T. (2018). Sustained inhibition of the native language in bilingual language production: A virtual reality approach. Bilingualism: Language and Cognition, 21(5), 1035-1061. doi:10.1017/S1366728917000396.
Abstract
Bilinguals often switch languages as a function of the language background of their addressee. The control mechanisms supporting bilinguals' ability to select the contextually appropriate language are heavily debated. Here we present four experiments in which unbalanced bilinguals named pictures in their first language Dutch and their second language English in mixed and blocked contexts. Immersive virtual reality technology was used to increase the ecological validity of the cued language-switching paradigm. Behaviorally, we consistently observed symmetrical switch costs, reversed language dominance, and asymmetrical mixing costs. These findings indicate that unbalanced bilinguals apply sustained inhibition to their dominant L1 in mixed language settings. Consequent enhanced processing costs for the L1 in a mixed versus a blocked context were reflected by a sustained positive component in event-related potentials. Methodologically, the use of virtual reality opens up a wide range of possibilities to study language and communication in bilingual and other communicative settings. -
Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.
Abstract
When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings. -
Peeters, D., Vanlangendonck, F., & Willems, R. M. (2012). Bestaat er een talenknobbel? Over taal in ons brein. In M. Boogaard, & M. Jansen (
Eds. ), Alles wat je altijd al had willen weten over taal: De taalcanon (pp. 41-43). Amsterdam: Meulenhoff.Abstract
Wanneer iemand goed is in het spreken van meerdere talen, wordt wel gezegd dat zo iemand een talenknobbel heeft. Iedereen weet dat dat niet letterlijk bedoeld is: iemand met een talenknobbel herkennen we niet aan een grote bult op zijn hoofd. Toch dacht men vroeger wel degelijk dat mensen een letterlijke talenknobbel konden ontwikkelen. Een goed ontwikkeld taalvermogen zou gepaard gaan met het groeien van het hersengebied dat hiervoor verantwoordelijk was. Dit deel van het brein zou zelfs zo groot kunnen worden dat het van binnenuit tegen de schedel drukte, met name rond de ogen. Nu weten we wel beter. Maar waar in het brein bevindt de taal zich dan wel precies? -
Dufau, S., Duñabeitia, J. A., Moret-Tatay, C., McGonigal, A., Peeters, D., Alario, F.-X., Balota, D. A., Brysbaert, M., Carreiras, M., Ferrand, L., Ktori, M., Perea, M., Rastle, K., Sasburg, O., Yap, M. J., Ziegler, J. C., & Grainger, J. (2011). Smart phone, smart science: How the use of smartphones can revolutionize research in cognitive science. PLoS One, 6(9), e24974. doi:10.1371/journal.pone.0024974.
Abstract
Investigating human cognitive faculties such as language, attention, and memory most often relies on testing small and homogeneous groups of volunteers coming to research facilities where they are asked to participate in behavioral experiments. We show that this limitation and sampling bias can be overcome by using smartphone technology to collect data in cognitive science experiments from thousands of subjects from all over the world. This mass coordinated use of smartphones creates a novel and powerful scientific ‘‘instrument’’ that yields the data necessary to test universal theories of cognition. This increase in power represents a potential revolution in cognitive science
Share this page