Publications

Displaying 1 - 7 of 7
  • Morales, A. E., Dong, Y., Brown, T., Baid, K., Kontopoulos, D.-.-G., Gonzalez, V., Huang, Z., Ahmed, A.-W., Bhuinya, A., Hilgers, L., Winkler, S., Hughes, G., Li, X., Lu, P., Yang, Y., Kirilenko, B. M., Devanna, P., Lama, T. M., Nissan, Y., Pippel, M. Morales, A. E., Dong, Y., Brown, T., Baid, K., Kontopoulos, D.-.-G., Gonzalez, V., Huang, Z., Ahmed, A.-W., Bhuinya, A., Hilgers, L., Winkler, S., Hughes, G., Li, X., Lu, P., Yang, Y., Kirilenko, B. M., Devanna, P., Lama, T. M., Nissan, Y., Pippel, M., Dávalos, L. M., Vernes, S. C., Puechmaille, S. J., Rossiter, S. J., Yovel, Y., Prescott, J. B., Kurth, A., Ray, D. A., Lim, B. K., Myers, E., Teeling, E. C., Banerjee, A., Irving, A. T., & Hiller, M. (2025). Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature, 638, 449-458. doi:10.1038/s41586-024-08471-0.

    Abstract

    Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.

    Additional information

    supplementary information
  • Alvarez van Tussenbroek, I., Knörnschild, M., Nagy, M., Ten Cate, C. J., & Vernes, S. C. (2024). Morphological diversity in the brains of 12 Neotropical Bat species. Acta Chiropterologica, 25(2), 323-338. doi:10.3161/15081109ACC2023.25.2.011.

    Abstract

    Comparative neurobiology allows us to investigate relationships between phylogeny and the brain and understand the evolution of traits. Bats constitute an attractive group of mammalian species for comparative studies, given their large diversity in behavioural phenotypes, brain morphology, and array of specialised traits. Currently, the order Chiroptera contains over 1,450 species within 21 families and spans ca. 65 million years of evolution. To date, 194 Neotropical bat species (ca. 13% of the total number of species around the world) have been recorded in Central America. This study includes qualitative and quantitative macromorphological descriptions of the brains of 12 species from six families of Neotropical bats. These analyses, which include histological neuronal staining of two species from different families (Phyllostomus hastatus and Saccopteryx bilineata), show substantial diversity in brain macromorphology including brain shape and size, exposure of mesencephalic regions, and cortical and cerebellar fissure depth. Brain macromorphology can in part be explained by phylogeny as species within the same family are more similar to each other. However, macromorphology cannot be explained by evolutionary time alone as brain differences between some phyllostomid bats are larger than between species from the family Emballonuridae despite being of comparable diverging distances in the phylogenetic tree. This suggests that faster evolutionary changes in brain morphology occurred in phyllostomids — although a larger number of species needs to be studied to confirm this. Our results show the rich diversity in brain morphology that bats provide for comparative and evolutionary studies.
  • Alvarez van Tussenbroek, I., Knörnschild, M., Nagy, M., O'Toole, B. P., Formenti, G., Philge, P., Zhang, N., Abueg, L., Brajuka, N., Jarvis, E., Volkert, T. L., Gray, J. L., Pieri, M., Mai, M., Teeling, E. C., Vernes, S. C., The Bat Biology Foundation, & The Bat1K Consortium (2024). The genome sequence of Rhynchonycteris naso, Peters, 1867 (Chiroptera, Emballonuridae, Rhynchonycteris). Wellcome Open Research, 9: 361. doi:10.12688/wellcomeopenres.19959.1.

    Abstract

    We present a reference genome assembly from an individual male Rhynchonycteris naso (Chordata; Mammalia; Chiroptera; Emballonuridae). The genome sequence is 2.46 Gb in span. The majority of the assembly is scaffolded into 22 chromosomal pseudomolecules, with the Y sex chromosome assembled.
  • de Reus, K., Benítez-Burraco, A., Hersh, T. A., Groot, N., Lambert, M. L., Slocombe, K. E., Vernes, S. C., & Raviv, L. (2024). Self-domestication traits in vocal learning mammals. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 105-108). Nijmegen: The Evolution of Language Conferences.
  • Sánchez-de la Vega, G., Gasca-Pineda, J., Martínez-Cárdenas, A., Vernes, S. C., Teeling, E. C., Mai, M., Aguirre-Planter, E., Eguiarte, L. E., Phillips, C. D., & Ortega, J. (2024). The genome sequence of the endemic Mexican common mustached Bat, Pteronotus mexicanus. Miller, 1902 [Mormoopidae; Pteronotus]. Gene, 929: 148821. doi:10.1016/j.gene.2024.148821.

    Abstract

    We describe here the first characterization of the genome of the bat Pteronotus mexicanus, an endemic species of Mexico, as part of the Mexican Bat Genome Project which focuses on the characterization and assembly of the genomes of endemic bats in Mexico. The genome was assembled from a liver tissue sample of an adult male from Jalisco, Mexico provided by the Texas Tech University Museum tissue collection. The assembled genome size was 1.9 Gb. The assembly of the genome was fitted in a framework of 110,533 scaffolds and 1,659,535 contigs. The ecological importance of bats such as P. mexicanus, and their diverse ecological roles, underscores the value of having complete genomes in addressing information gaps and facing challenges regarding their function in ecosystems and their conservation.

    Additional information

    supplementary data
  • Johns, T. G., Vitali, A. A., Perera, R. M., Vernes, S. C., & Scott, A. M. (2005). Ligand-independent activation of the EGFRvIII: A naturally occurring mutation of the EGFR commonly expressed in glioma [Abstract]. Neuro-Oncology, 7, 299.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2–7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We have now mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies unique to the different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed both in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every tyrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation could be mimicked in vitro by the addition of specifi c components of the ECM such as collagen via an integrin-dependent mechanism. Since this increase in in vivo phosphorylation enhances de2-7 EGFR signaling, this observation explains why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment. In a second set of experiments we analyzed the interaction between EGFRvIII and ErbB2. Co-expression of these proteins in NR6 cells, a mouse fi broblast line devoid of ErbB family members, dramatically enhanced in vivo tumorigenicity of these cells compared to cells expressing either protein alone. Detailed analysis of these xenografts demonstrated that EGFRvIII could heterodimerize and transphosphorylate the ErbB2. Since both EGFRvIII and ErbB2 are commonly expressed at gliomas, this data suggests that the co-expression of these two proteins may enhance glioma tumorigenicity.
  • MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A.-M., Lai, C. S. L., Vernes, S. C., Vargha-Khadem, F., McKenzie, F., Smith, R. L., Monaco, A. P., & Fisher, S. E. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76(6), 1074-1080. doi:10.1086/430841.

    Abstract

    FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearrangements involving this locus have also been identified. Analyses of FOXP2 coding sequence in typical forms of specific language impairment (SLI), autism, and dyslexia have not uncovered any etiological variants. However, no previous study has performed mutation screening of children with a primary diagnosis of verbal dyspraxia, the most overt feature of the disorder in affected members of the KE family. Here, we report investigations of the entire coding region of FOXP2, including alternatively spliced exons, in 49 probands affected with verbal dyspraxia. We detected variants that alter FOXP2 protein sequence in three probands. One such variant is a heterozygous nonsense mutation that yields a dramatically truncated protein product and cosegregates with speech and language difficulties in the proband, his affected sibling, and their mother. Our discovery of the first nonsense mutation in FOXP2 now opens the door for detailed investigations of neurodevelopment in people carrying different etiological variants of the gene. This endeavor will be crucial for gaining insight into the role of FOXP2 in human cognition.

Share this page