Displaying 1 - 11 of 11
-
D’Onofrio, G., Accogli, A., Severino, M., Caliskan, H., Kokotović, T., Blazekovic, A., Jercic, K. G., Markovic, S., Zigman, T., Goran, K., Barišić, N., Duranovic, V., Ban, A., Borovecki, F., Ramadža, D. P., Barić, I., Fazeli, W., Herkenrath, P., Marini, C., Vittorini, R. and 30 moreD’Onofrio, G., Accogli, A., Severino, M., Caliskan, H., Kokotović, T., Blazekovic, A., Jercic, K. G., Markovic, S., Zigman, T., Goran, K., Barišić, N., Duranovic, V., Ban, A., Borovecki, F., Ramadža, D. P., Barić, I., Fazeli, W., Herkenrath, P., Marini, C., Vittorini, R., Gowda, V., Bouman, A., Rocca, C., Alkhawaja, I. A., Murtaza, B. N., Rehman, M. M. U., Al Alam, C., Nader, G., Mancardi, M. M., Giacomini, T., Srivastava, S., Alvi, J. R., Tomoum, H., Matricardi, S., Iacomino, M., Riva, A., Scala, M., Madia, F., Pistorio, A., Salpietro, V., Minetti, C., Rivière, J.-B., Srour, M., Efthymiou, S., Maroofian, R., Houlden, H., Vernes, S. C., Zara, F., Striano, P., & Nagy, V. (2023). Genotype–phenotype correlation in contactin-associated protein-like 2 (CNTNAP-2) developmental disorder. Human Genetics, 142, 909-925. doi:10.1007/s00439-023-02552-2.
Abstract
Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell–cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with “Pitt-Hopkins-like syndrome-1” (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype–phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype–phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.Additional information
supplementary tables -
Lu, A. T., Fei, Z., Haghani, A., Robeck, T. R., Zoller, J. A., Li, C. Z., Lowe, R., Yan, Q., Zhang, J., Vu, H., Ablaeva, J., Acosta-Rodriguez, V. A., Adams, D. M., Almunia, J., Aloysius, A., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K. and 168 moreLu, A. T., Fei, Z., Haghani, A., Robeck, T. R., Zoller, J. A., Li, C. Z., Lowe, R., Yan, Q., Zhang, J., Vu, H., Ablaeva, J., Acosta-Rodriguez, V. A., Adams, D. M., Almunia, J., Aloysius, A., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K., Bennett, N. C., Black, P., Blumstein, D. T., Bors, E. K., Breeze, C. E., Brooke, R. T., Brown, J. L., Carter, G. G., Caulton, A., Cavin, J. M., Chakrabarti, L., Chatzistamou, I., Chen, H., Cheng, K., Chiavellini, P., Choi, O. W., Clarke, S. M., Cooper, L. N., Cossette, M. L., Day, J., DeYoung, J., DiRocco, S., Dold, C., Ehmke, E. E., Emmons, C. K., Emmrich, S., Erbay, E., Erlacher-Reid, C., Faulkes, C. G., Ferguson, S. H., Finno, C. J., Flower, J. E., Gaillard, J. M., Garde, E., Gerber, L., Gladyshev, V. N., Gorbunova, V., Goya, R. G., Grant, M. J., Green, C. B., Hales, E. N., Hanson, M. B., Hart, D. W., Haulena, M., Herrick, K., Hogan, A. N., Hogg, C. J., Hore, T. A., Huang, T., Izpisua Belmonte, J. C., Jasinska, A. J., Jones, G., Jourdain, E., Kashpur, O., Katcher, H., Katsumata, E., Kaza, V., Kiaris, H., Kobor, M. S., Kordowitzki, P., Koski, W. R., Krützen, M., Kwon, S. B., Larison, B., Lee, S. G., Lehmann, M., Lemaitre, J. F., Levine, A. J., Li, C., Li, X., Lim, A. R., Lin, D. T. S., Lindemann, D. M., Little, T. J., Macoretta, N., Maddox, D., Matkin, C. O., Mattison, J. A., McClure, M., Mergl, J., Meudt, J. J., Montano, G. A., Mozhui, K., Munshi-South, J., Naderi, A., Nagy, M., Narayan, P., Nathanielsz, P. W., Nguyen, N. B., Niehrs, C., O’Brien, J. K., O’Tierney Ginn, P., Odom, D. T., Ophir, A. G., Osborn, S., Ostrander, E. A., Parsons, K. M., Paul, K. C., Pellegrini, M., Peters, K. J., Pedersen, A. B., Petersen, J. L., Pietersen, D. W., Pinho, G. M., Plassais, J., Poganik, J. R., Prado, N. A., Reddy, P., Rey, B., Ritz, B. R., Robbins, J., Rodriguez, M., Russell, J., Rydkina, E., Sailer, L. L., Salmon, A. B., Sanghavi, A., Schachtschneider, K. M., Schmitt, D., Schmitt, T., Schomacher, L., Schook, L. B., Sears, K. E., Seifert, A. W., Seluanov, A., Shafer, A. B. A., Shanmuganayagam, D., Shindyapina, A. V., Simmons, M., Singh, K., Sinha, I., Slone, J., Snell, R. G., Soltanmaohammadi, E., Spangler, M. L., Spriggs, M. C., Staggs, L., Stedman, N., Steinman, K. J., Stewart, D. T., Sugrue, V. J., Szladovits, B., Takahashi, J. S., Takasugi, M., Teeling, E. C., Thompson, M. J., Van Bonn, B., Vernes, S. C., Villar, D., Vinters, H. V., Wallingford, M. C., Wang, N., Wayne, R. K., Wilkinson, G. S., Williams, C. K., Williams, R. W., Yang, X. W., Yao, M., Young, B. G., Zhang, B., Zhang, Z., Zhao, P., Zhao, Y., Zhou, W., Zimmermann, J., Ernst, J., Raj, K., & Horvath, S. (2023). Universal DNA methylation age across mammalian tissues. Nature aging, 3, 1144-1166. doi:10.1038/s43587-023-00462-6.
Abstract
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals. -
Haghani, A., Li, C. Z., Robeck, T. R., Zhang, J., Lu, A. T., Ablaeva, J., Acosta-Rodríguez, V. A., Adams, D. M., Alagaili, A. N., Almunia, J., Aloysius, A., Amor, N. M. S., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K., Bennett, N. C., Black, P., Blumstein, D. T. and 170 moreHaghani, A., Li, C. Z., Robeck, T. R., Zhang, J., Lu, A. T., Ablaeva, J., Acosta-Rodríguez, V. A., Adams, D. M., Alagaili, A. N., Almunia, J., Aloysius, A., Amor, N. M. S., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K., Bennett, N. C., Black, P., Blumstein, D. T., Bors, E. K., Breeze, C. E., Brooke, R. T., Brown, J. L., Carter, G., Caulton, A., Cavin, J. M., Chakrabarti, L., Chatzistamou, I., Chavez, A. S., Chen, H., Cheng, K., Chiavellini, P., Choi, O.-W., Clarke, S., Cook, J. A., Cooper, L. N., Cossette, M.-L., Day, J., DeYoung, J., Dirocco, S., Dold, C., Dunnum, J. L., Ehmke, E. E., Emmons, C. K., Emmrich, S., Erbay, E., Erlacher-Reid, C., Faulkes, C. G., Fei, Z., Ferguson, S. H., Finno, C. J., Flower, J. E., Gaillard, J.-M., Garde, E., Gerber, L., Gladyshev, V. N., Goya, R. G., Grant, M. J., Green, C. B., Hanson, M. B., Hart, D. W., Haulena, M., Herrick, K., Hogan, A. N., Hogg, C. J., Hore, T. A., Huang, T., Izpisua Belmonte, J. C., Jasinska, A. J., Jones, G., Jourdain, E., Kashpur, O., Katcher, H., Katsumata, E., Kaza, V., Kiaris, H., Kobor, M. S., Kordowitzki, P., Koski, W. R., Krützen, M., Kwon, S. B., Larison, B., Lee, S.-G., Lehmann, M., Lemaître, J.-F., Levine, A. J., Li, X., Li, C., Lim, A. R., Lin, D. T. S., Lindemann, D. M., Liphardt, S. W., Little, T. J., Macoretta, N., Maddox, D., Matkin, C. O., Mattison, J. A., McClure, M., Mergl, J., Meudt, J. J., Montano, G. A., Mozhui, K., Munshi-South, J., Murphy, W. J., Naderi, A., Nagy, M., Narayan, P., Nathanielsz, P. W., Nguyen, N. B., Niehrs, C., Nyamsuren, B., O’Brien, J. K., Ginn, P. O., Odom, D. T., Ophir, A. G., Osborn, S., Ostrander, E. A., Parsons, K. M., Paul, K. C., Pedersen, A. B., Pellegrini, M., Peters, K. J., Petersen, J. L., Pietersen, D. W., Pinho, G. M., Plassais, J., Poganik, J. R., Prado, N. A., Reddy, P., Rey, B., Ritz, B. R., Robbins, J., Rodriguez, M., Russell, J., Rydkina, E., Sailer, L. L., Salmon, A. B., Sanghavi, A., Schachtschneider, K. M., Schmitt, D., Schmitt, T., Schomacher, L., Schook, L. B., Sears, K. E., Seifert, A. W., Shafer, A. B. A., Shindyapina, A. V., Simmons, M., Singh, K., Sinha, I., Slone, J., Snell, R. G., Soltanmohammadi, E., Spangler, M. L., Spriggs, M., Staggs, L., Stedman, N., Steinman, K. J., Stewart, D. T., Sugrue, V. J., Szladovits, B., Takahashi, J. S., Takasugi, M., Teeling, E. C., Thompson, M. J., Van Bonn, B., Vernes, S. C., Villar, D., Vinters, H. V., Vu, H., Wallingford, M. C., Wang, N., Wilkinson, G. S., Williams, R. W., Yan, Q., Yao, M., Young, B. G., Zhang, B., Zhang, Z., Zhao, Y., Zhao, P., Zhou, W., Zoller, J. A., Ernst, J., Seluanov, A., Gorbunova, V., Yang, X. W., Raj, K., & Horvath, S. (2023). DNA methylation networks underlying mammalian traits. Science, 381(6658): eabq5693. doi:10.1126/science.abq5693.
Abstract
INTRODUCTION
Comparative epigenomics is an emerging field that combines epigenetic signatures with phylogenetic relationships to elucidate species characteristics such as maximum life span. For this study, we generated cytosine DNA methylation (DNAm) profiles (n = 15,456) from 348 mammalian species using a methylation array platform that targets highly conserved cytosines.
RATIONALE
Nature has evolved mammalian species of greatly differing life spans. To resolve the relationship of DNAm with maximum life span and phylogeny, we performed a large-scale cross-species unsupervised analysis. Comparative studies in many species enables the identification of epigenetic correlates of maximum life span and other traits.
RESULTS
We first tested whether DNAm levels in highly conserved cytosines captured phylogenetic relationships among species. We constructed phyloepigenetic trees that paralleled the traditional phylogeny. To avoid potential confounding by different tissue types, we generated tissue-specific phyloepigenetic trees. The high phyloepigenetic-phylogenetic congruence is due to differences in methylation levels and is not confounded by sequence conservation.
We then interrogated the extent to which DNA methylation associates with specific biological traits. We used an unsupervised weighted correlation network analysis (WGCNA) to identify clusters of highly correlated CpGs (comethylation modules). WGCNA identified 55 distinct comethylation modules, of which 30 were significantly associated with traits including maximum life span, adult weight, age, sex, human mortality risk, or perturbations that modulate murine life span.
Both the epigenome-wide association analysis (EWAS) and eigengene-based analysis identified methylation signatures of maximum life span, and most of these were independent of aging, presumably set at birth, and could be stable predictors of life span at any point in life. Several CpGs that are more highly methylated in long-lived species are located near HOXL subclass homeoboxes and other genes that play a role in morphogenesis and development. Some of these life span–related CpGs are located next to genes that are also implicated in our analysis of upstream regulators (e.g., ASCL1 and SMAD6). CpGs with methylation levels that are inversely related to life span are enriched in transcriptional start site (TSS1) and promoter flanking (PromF4, PromF5) associated chromatin states. Genes located in chromatin state TSS1 are constitutively active and enriched for nucleic acid metabolic processes. This suggests that long-living species evolved mechanisms that maintain low methylation levels in these chromatin states that would favor higher expression levels of genes essential for an organism’s survival.
The upstream regulator analysis of the EWAS of life span identified the pluripotency transcription factors OCT4, SOX2, and NANOG. Other factors, such as POLII, CTCF, RAD21, YY1, and TAF1, showed the strongest enrichment for negatively life span–related CpGs.
CONCLUSION
The phyloepigenetic trees indicate that divergence of DNA methylation profiles closely parallels that of genetics through evolution. Our results demonstrate that DNA methylation is subjected to evolutionary pressures and selection. The publicly available data from our Mammalian Methylation Consortium are a rich source of information for different fields such as evolutionary biology, developmental biology, and aging. -
Paulat, N. S., Storer, J. M., Moreno-Santillán, D. D., Osmanski, A. B., Sullivan, K. A. M., Grimshaw, J. R., Korstian, J., Halsey, M., Garcia, C. J., Crookshanks, C., Roberts, J., Smit, A. F. A., Hubley, R., Rosen, J., Teeling, E. C., Vernes, S. C., Myers, E., Pippel, M., Brown, T., Hiller, M. and 5 morePaulat, N. S., Storer, J. M., Moreno-Santillán, D. D., Osmanski, A. B., Sullivan, K. A. M., Grimshaw, J. R., Korstian, J., Halsey, M., Garcia, C. J., Crookshanks, C., Roberts, J., Smit, A. F. A., Hubley, R., Rosen, J., Teeling, E. C., Vernes, S. C., Myers, E., Pippel, M., Brown, T., Hiller, M., Zoonomia Consortium, Rojas, D., Dávalos, L. M., Lindblad-Toh, K., Karlsson, E. K., & Ray, D. A. (2023). Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia. Molecular Biology and Evolution, 40(5): msad092. doi:10.1093/molbev/msad092.
Abstract
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats. -
Rutz, C., Bronstein, M., Raskin, A., Vernes, S. C., Zacarian, K., & Blasi, D. E. (2023). Using machine learning to decode animal communication. Science, 381(6654), 152-155. doi:10.1126/science.adg7314.
Abstract
The past few years have seen a surge of interest in using machine learning (ML) methods for studying the behavior of nonhuman animals (hereafter “animals”) (1). A topic that has attracted particular attention is the decoding of animal communication systems using deep learning and other approaches (2). Now is the time to tackle challenges concerning data availability, model validation, and research ethics, and to embrace opportunities for building collaborations across disciplines and initiatives. -
Devanna, P., & Vernes, S. C. (2014). A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Scientific Reports, 4: 3994. doi:10.1038/srep03994.
Abstract
Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes -
Devanna, P., Middelbeek, J., & Vernes, S. C. (2014). FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Frontiers in Cellular Neuroscience, 8: 305. doi:10.3389/fncel.2014.00305.
Abstract
FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells -
Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: Complex functions to complex disorders. European Journal of Human Genetics, 22(2), 171-178. doi:10.1038/ejhg.2013.100.
Abstract
The genetic basis of complex neurological disorders involving language are poorly understood, partly due to the multiple additive genetic risk factors that are thought to be responsible. Furthermore, these conditions are often syndromic in that they have a range of endophenotypes that may be associated with the disorder and that may be present in different combinations in patients. However, the emergence of individual genes implicated across multiple disorders has suggested that they might share similar underlying genetic mechanisms. The CNTNAP2 gene is an excellent example of this, as it has recently been implicated in a broad range of phenotypes including autism spectrum disorder (ASD), schizophrenia, intellectual disability, dyslexia and language impairment. This review considers the evidence implicating CNTNAP2 in these conditions, the genetic risk factors and mutations that have been identified in patient and population studies and how these relate to patient phenotypes. The role of CNTNAP2 is examined in the context of larger neurogenetic networks during development and disorder, given what is known regarding the regulation and function of this gene. Understanding the role of CNTNAP2 in diverse neurological disorders will further our understanding of how combinations of individual genetic risk factors can contribute to complex conditions -
Vernes, S. C. (2014). Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports, 4: 4412. doi:10.1038/srep04412.
Abstract
The fruitless gene (fru) encodes a set of transcription factors (Fru) that display sexually dimorphic gene expression in the brain of the fruit-fly;Drosophila melanogaster . Behavioural studies have demonstrated that fru isessentialforcourtshipbehaviour inthemale flyandisthoughttoact bydirectingthe development of sex-specific neural circuitry that encodes this innate behavioural response. This study reports the identification of direct regulatory targets of the sexually dimorphic isoforms of the Fru protein using an in vitro model system. Genome wide binding sites were identified for each of the isoforms using Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-Seq). Putative target genes were found to be involved in processes such as neurotransmission, ion-channel signalling and neuron development. All isoforms showed asignificant bias towards genes located on the X-chromosome,which may reflect a specific role for Fru in regulating x-linked genes. Taken together with expression analysis carried out in Fru positive neurons specifically isolated from the male fly brain, it appears that the Fru protein acts as a transcriptional activator. Understanding the regulatory cascades induced by Fru will help to shed light on the molecular mechanisms that are important for specification of neural circuitry underlying complex behaviourAdditional information
http://staging-www.nature.com/srep/2014/140319/srep04412/full/srep04412.html#su… -
Vernes, S. C., MacDermot, K. D., Monaco, A. P., & Fisher, S. E. (2009). Assessing the impact of FOXP1 mutations on developmental verbal dyspraxia. European Journal of Human Genetics, 17(10), 1354-1358. doi:10.1038/ejhg.2009.43.
Abstract
Neurodevelopmental disorders that disturb speech and language are highly heritable. Isolation of the underlying genetic risk factors has been hampered by complexity of the phenotype and potentially large number of contributing genes. One exception is the identification of rare heterozygous mutations of the FOXP2 gene in a monogenic syndrome characterised by impaired sequencing of articulatory gestures, disrupting speech (developmental verbal dyspraxia, DVD), as well as multiple deficits in expressive and receptive language. The protein encoded by FOXP2 belongs to a divergent subgroup of forkhead-box transcription factors, with a distinctive DNA-binding domain and motifs that mediate hetero- and homodimerisation. FOXP1, the most closely related member of this subgroup, can directly interact with FOXP2 and is co-expressed in neural structures relevant to speech and language disorders. Moreover, investigations of songbird orthologues indicate that combinatorial actions of the two proteins may play important roles in vocal learning, leading to the suggestion that human FOXP1 should be considered a strong candidate for involvement in DVD. Thus, in this study, we screened the entire coding region of FOXP1 (exons and flanking intronic sequence) for nucleotide changes in a panel of probands used earlier to detect novel mutations in FOXP2. A non-synonymous coding change was identified in a single proband, yielding a proline-to-alanine change (P215A). However, this was also found in a random control sample. Analyses of non-coding SNP changes did not find any correlation with affection status. We conclude that FOXP1 mutations are unlikely to represent a major cause of DVD.Additional information
ejhg200943x1.pdf -
Vernes, S. C., & Fisher, S. E. (2009). Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions (London), 37, 1263-1269. doi:10.1042/BST0371263.
Abstract
Childhood syndromes disturbing language development are common and display high degrees of heritability. In most cases, the underlying genetic architecture is likely to be complex, involving multiple chromosomal loci and substantial heterogeneity, which makes it difficult to track down the crucial genomic risk factors. Investigation of rare Mendelian phenotypes offers a complementary route for unravelling key neurogenetic pathways. The value of this approach is illustrated by the discovery that heterozygous FOXP2 (where FOX is forkhead box) mutations cause an unusual monogenic disorder, characterized by problems with articulating speech along with deficits in expressive and receptive language. FOXP2 encodes a regulatory protein, belonging to the forkhead box family of transcription factors, known to play important roles in modulating gene expression in development and disease. Functional genetics using human neuronal models suggest that the different FOXP2 isoforms generated by alternative splicing have distinct properties and may act to regulate each other's activity. Such investigations have also analysed the missense and nonsense mutations found in cases of speech and language disorder, showing that they alter intracellular localization, DNA binding and transactivation capacity of the mutated proteins. Moreover, in the brains of mutant mice, aetiological mutations have been found to disrupt the synaptic plasticity of Foxp2-expressing circuitry. Finally, although mutations of FOXP2 itself are rare, the downstream networks which it regulates in the brain appear to be broadly implicated in typical forms of language impairment. Thus, through ongoing identification of regulated targets and interacting co-factors, this gene is providing the first molecular entry points into neural mechanisms that go awry in language-related disorders
Share this page