Displaying 1 - 4 of 4
-
Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (
Eds. ), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.Abstract
This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language. -
Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (
Ed. ), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press. -
Vernes, S. C., & Fisher, S. E. (2013). Genetic pathways implicated in speech and language. In S. Helekar (
Ed. ), Animal models of speech and language disorders (pp. 13-40). New York: Springer. doi:10.1007/978-1-4614-8400-4_2.Abstract
Disorders of speech and language are highly heritable, providing strong
support for a genetic basis. However, the underlying genetic architecture is complex,
involving multiple risk factors. This chapter begins by discussing genetic loci associated
with common multifactorial language-related impairments and goes on to
detail the only gene (known as FOXP2) to be directly implicated in a rare monogenic
speech and language disorder. Although FOXP2 was initially uncovered in
humans, model systems have been invaluable in progressing our understanding of
the function of this gene and its associated pathways in language-related areas of the
brain. Research in species from mouse to songbird has revealed effects of this gene
on relevant behaviours including acquisition of motor skills and learned vocalisations
and demonstrated a role for Foxp2 in neuronal connectivity and signalling,
particularly in the striatum. Animal models have also facilitated the identification of
wider neurogenetic networks thought to be involved in language development and
disorder and allowed the investigation of new candidate genes for disorders involving
language, such as CNTNAP2 and FOXP1. Ongoing work in animal models promises
to yield new insights into the genetic and neural mechanisms underlying human
speech and language -
Vernes, S. C., & Fisher, S. E. (2011). Functional genomic dissection of speech and language disorders. In J. D. Clelland (
Ed. ), Genomics, proteomics, and the nervous system (pp. 253-278). New York: Springer.Abstract
Mutations of the human FOXP2 gene have been shown to cause severe difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech (developmental verbal dyspraxia or DVD). Affected individuals are impaired in multiple aspects of expressive and receptive linguistic processing and display abnormal grey matter volume and functional activation patterns in cortical and subcortical brain regions. The protein encoded by FOXP2 belongs to a divergent subgroup of forkhead-box transcription factors, with a distinctive DNA-binding domain and motifs that mediate hetero- and homodimerization. This chapter describes the successful use of FOXP2 as a unique molecular window into neurogenetic pathways that are important for speech and language development, adopting several complementary strategies. These include direct functional investigations of FOXP2 splice variants and the effects of etiological mutations. FOXP2’s role as a transcription factor also enabled the development of functional genomic routes for dissecting neurogenetic mechanisms that may be relevant for speech and language. By identifying downstream target genes regulated by FOXP2, it was possible to identify common regulatory themes in modulating synaptic plasticity, neurodevelopment, and axon guidance. These targets represent novel entrypoints into in vivo pathways that may be disturbed in speech and language disorders. The identification of FOXP2 target genes has also led to the discovery of a shared neurogenetic pathway between clinically distinct language disorders; the rare Mendelian form of DVD and a complex and more common form of language disorder known as Specific Language Impairment.Files private
Request files
Share this page