Displaying 1 - 4 of 4
-
Galke, L., & Raviv, L. (2025). Learning and communication pressures in neural networks: Lessons from emergent communication. Language Development Research, 5(1), 116-143. doi:10.34842/3vr5-5r49.
Abstract
Finding and facilitating commonalities between the linguistic behaviors of large language models and humans could lead to major breakthroughs in our understanding of the acquisition, processing, and evolution of language. However, most findings on human–LLM similarity can be attributed to training on human data. The field of emergent machine-to-machine communication provides an ideal testbed for discovering which pressures are neural agents naturally exposed to when learning to communicate in isolation, without any human language to start with. Here, we review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved thanks to introducing theoretically-motivated inductive biases. By contrasting humans, large language models, and emergent communication agents, we then identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors. We discuss their implications and relevance to the field of language evolution and acquisition. By mapping out the necessary inductive biases that make agents' emergent languages more human-like, we not only shed light on the underlying principles of human cognition and communication, but also inform and improve the very use of these models as valuable scientific tools for studying language learning, processing, use, and representation more broadly. -
Tsomokos, D. I., & Raviv, L. (2025). A bidirectional association between language development and prosocial behaviour in childhood: Evidence from a longitudinal birth cohort in the United Kingdom. Developmental Psychology, 61(2), 336-350. doi:10.1037/dev0001875.
Abstract
This study investigated a developmental cascade between prosocial and linguistic abilities in a large sample (N = 11,051) from the general youth population in the United Kingdom (50% female, 46% living in disadvantaged neighborhoods, 13% non-White). Cross-lagged panel models showed that verbal ability at age 3 predicted prosociality at age 7, which in turn predicted verbal ability at age 11. Latent growth models also showed that gains in prosociality between 3 and 5 years were associated with increased verbal ability between 5 and 11 years and vice versa. Theory of mind and social competence at age 5 mediated the association between early childhood prosociality and late childhood verbal ability. These results remained robust even after controlling for socioeconomic factors, maternal mental health, parenting microclimate in the home environment, and individual characteristics (sex, ethnicity, and special educational needs). The findings suggest that language skills could be boosted through mentalizing activities and prosocial behaviors. -
Raviv, L., & Arnon, I. (2016). The developmental trajectory of children's statistical learning abilities. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (
Eds. ), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 1469-1474). Austin, TX: Cognitive Science Society.Abstract
Infants, children and adults are capable of implicitly extracting regularities from their environment through statistical learning (SL). SL is present from early infancy and found across tasks and modalities, raising questions about the domain generality of SL. However, little is known about its’ developmental trajectory: Is SL fully developed capacity in infancy, or does it improve with age, like other cognitive skills? While SL is well established in infants and adults, only few studies have looked at SL across development with conflicting results: some find age-related improvements while others do not. Importantly, despite its postulated role in language learning, no study has examined the developmental trajectory of auditory SL throughout childhood. Here, we conduct a large-scale study of children's auditory SL across a wide age-range (5-12y, N=115). Results show that auditory SL does not change much across development. We discuss implications for modality-based differences in SL and for its role in language acquisition.Additional information
https://mindmodeling.org/cogsci2016/papers/0260/index.html -
Raviv, L., & Arnon, I. (2016). Language evolution in the lab: The case of child learners. In A. Papagrafou, D. Grodner, D. Mirman, & J. Trueswell (
Eds. ), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 1643-1648). Austin, TX: Cognitive Science Society.Abstract
Recent work suggests that cultural transmission can lead to the emergence of linguistic structure as speakers’ weak individual biases become amplified through iterated learning. However, to date, no published study has demonstrated a similar emergence of linguistic structure in children. This gap is problematic given that languages are mainly learned by children and that adults may bring existing linguistic biases to the task. Here, we conduct a large-scale study of iterated language learning in both children and adults, using a novel, child-friendly paradigm. The results show that while children make more mistakes overall, their languages become more learnable and show learnability biases similar to those of adults. Child languages did not show a significant increase in linguistic structure over time, but consistent mappings between meanings and signals did emerge on many occasions, as found with adults. This provides the first demonstration that cultural transmission affects the languages children and adults produce similarly.Additional information
https://mindmodeling.org/cogsci2016/papers/0289/index.html
Share this page