Displaying 1 - 4 of 4
-
Carota, F., Schoffelen, J.-M., Oostenveld, R., & Indefrey, P. (2022). The time course of language production as revealed by pattern classification of MEG sensor data. The Journal of Neuroscience, 42(29), 5745-5754. doi:10.1523/JNEUROSCI.1923-21.2022.
Abstract
Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production -
Lemhöfer, K., Schriefers, H., & Indefrey, P. (2020). Syntactic processing in L2 depends on perceived reliability of the input: Evidence from P600 responses to correct input. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(10), 1948-1965. doi:10.1037/xlm0000895.
Abstract
In 3 ERP experiments, we investigated how experienced L2 speakers process natural and correct syntactic input that deviates from their own, sometimes incorrect, syntactic representations. Our previous study (Lemhöfer, Schriefers, & Indefrey, 2014) had shown that L2 speakers do engage in native-like syntactic processing of gender agreement but base this processing on their own idiosyncratic (and sometimes incorrect) grammars. However, as in other standard ERP studies, but different from realistic L2 input, the materials in that study contained a large proportion of incorrect sentences. In the present study, German speakers of Dutch read exclusively objectively correct Dutch sentences that did or did not contain subjective determiner “errors” (e.g., de boot “the boat,” which conflicts with the intuition of many German speakers that the correct phrase should be het boot). During reading for comprehension (Experiment 1), no syntax-related ERP responses for subjectively incorrect compared to correct phrases were observed. The same was true even when participants explicitly attended to and learned from the determiners in the sentences (Experiment 2). Only when participants judged the correctness of determiners in each sentence (Experiment 3) did a clear P600 appear. These results suggest that the full and native-like use of subjective grammars, as reflected in the P600 to subjective violations, occurs only when speakers have reason to mistrust the grammaticality of the input, either because of the nature of the task (grammaticality judgments) or because of the salient presence of incorrect sentences. -
Indefrey, P., Brown, C. M., Hellwig, F. M., Amunts, K., Herzog, H., Seitz, R. J., & Hagoort, P. (2001). A neural correlate of syntactic encoding during speech production. Proceedings of the National Academy of Sciences of the United States of America, 98, 5933-5936. doi:10.1073/pnas.101118098.
Abstract
Spoken language is one of the most compact and structured ways to convey information. The linguistic ability to structure individual words into larger sentence units permits speakers to express a nearly unlimited range of meanings. This ability is rooted in speakers’ knowledge of syntax and in the corresponding process of syntactic encoding. Syntactic encoding is highly automatized, operates largely outside of conscious awareness, and overlaps closely in time with several other processes of language production. With the use of positron emission tomography we investigated the cortical activations during spoken language production that are related to the syntactic encoding process. In the paradigm of restrictive scene description, utterances varying in complexity of syntactic encoding were elicited. Results provided evidence that the left Rolandic operculum, caudally adjacent to Broca’s area, is involved in both sentence-level and local (phrase-level) syntactic encoding during speaking. -
Indefrey, P., Hagoort, P., Herzog, H., Seitz, R. J., & Brown, C. M. (2001). Syntactic processing in left prefrontal cortex is independent of lexical meaning. Neuroimage, 14, 546-555. doi:10.1006/nimg.2001.0867.
Abstract
In language comprehension a syntactic representation is built up even when the input is semantically uninterpretable. We report data on brain activation during syntactic processing, from an experiment on the detection of grammatical errors in meaningless sentences. The experimental paradigm was such that the syntactic processing was distinguished from other cognitive and linguistic functions. The data reveal that in syntactic error detection an area of the left dorsolateral prefrontal cortex, adjacent to Broca’s area, is specifically involved in the syntactic processing aspects, whereas other prefrontal areas subserve general error detection processes.
Share this page