Displaying 1 - 16 of 16
-
FitzPatrick, I., & Indefrey, P. (2014). Head start for target language in bilingual listening. Brain Research, 1542, 111-130. doi:10.1016/j.brainres.2013.10.014.
Abstract
In this study we investigated the availability of non-target language semantic features in bilingual speech processing. We recorded EEG from Dutch-English bilinguals who listened to spoken sentences in their L2 (English) or L1 (Dutch). In Experiments 1 and 3 the sentences contained an interlingual homophone. The sentence context was either biased towards the target language meaning of the homophone (target biased), the non-target language meaning (non-target biased), or neither meaning of the homophone (fully incongruent). These conditions were each compared to a semantically congruent control condition. In L2 sentences we observed an N400 in the non-target biased condition that had an earlier offset than the N400 to fully incongruent homophones. In the target biased condition, a negativity emerged that was later than the N400 to fully incongruent homophones. In L1 contexts, neither target biased nor non-target biased homophones yielded significant N400 effects (compared to the control condition). In Experiments 2 and 4 the sentences contained a language switch to a non-target language word that could be semantically congruent or incongruent. Semantically incongruent words (switched, and non-switched) elicited an N400 effect. The N400 to semantically congruent language-switched words had an earlier offset than the N400 to incongruent words. Both congruent and incongruent language switches elicited a Late Positive Component (LPC). These findings show that bilinguals activate both meanings of interlingual homophones irrespective of their contextual fit. In L2 contexts, the target-language meaning of the homophone has a head start over the non-target language meaning. The target-language head start is also evident for language switches from both L2-to-L1 and L1-to-L2 -
Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.
Abstract
A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.Additional information
http://www.annualreviews.org/doi/suppl/10.1146/annurev-neuro-071013-013847 -
Indefrey, P. (2014). Time course of word production does not support a parallel input architecture. Language, Cognition and Neuroscience, 29(1), 33-34. doi:10.1080/01690965.2013.847191.
Abstract
Hickok's enterprise to unify psycholinguistic and motor control models is highly stimulating. Nonetheless, there are problems of the model with respect to the time course of neural activation in word production, the flexibility for continuous speech, and the need for non-motor feedback.Files private
Request files -
Lemhoefer, K., Schriefers, H., & Indefrey, P. (2014). Idiosyncratic Grammars: Syntactic Processing in Second Language Comprehension Uses Subjective Feature Representations. Journal of Cognitive Neuroscience, 26(7), 1428-1444. doi:10.1162/jocn_a_00609.
Abstract
Learning the syntax of a second language (L2) often represents a big challenge to L2 learners. Previous research on syntactic processing in L2 has mainly focused on how L2 speakers respond to "objective" syntactic violations, that is, phrases that are incorrect by native standards. In this study, we investigate how L2 learners, in particular those of less than near-native proficiency, process phrases that deviate from their own, "subjective," and often incorrect syntactic representations, that is, whether they use these subjective and idiosyncratic representations during sentence comprehension. We study this within the domain of grammatical gender in a population of German learners of Dutch, for which systematic errors of grammatical gender are well documented. These L2 learners as well as a control group of Dutch native speakers read Dutch sentences containing gender-marked determinernoun phrases in which gender agreement was either (objectively) correct or incorrect. Furthermore, the noun targets were selected such that, in a high proportion of nouns, objective and subjective correctness would differ for German learners. The ERP results show a syntactic violation effect (P600) for objective gender agreement violations for native, but not for nonnative speakers. However, when the items were re-sorted for the L2 speakers according to subjective correctness (as assessed offline), the P600 effect emerged as well. Thus, rather than being insensitive to violations of gender agreement, L2 speakers are similarly sensitive as native speakers but base their sensitivity on their subjective-sometimes incorrect-representations.Files private
Request files -
Redmann, A., FitzPatrick, I., Hellwig, F. M., & Indefrey, P. (2014). The use of conceptual components in language production: an ERP study. Frontiers in Psychology, 5: 363. doi:10.3389/fpsyg.2014.00363.
Abstract
According to frame-theory, concepts can be represented as structured frames that contain conceptual attributes (e.g., "color") and their values (e.g., "red"). A particular color value can be seen as a core conceptual component for (high color-diagnostic; HCD) objects (e.g., bananas) which are strongly associated with a typical color, but less so for (low color-diagnostic; LCD) objects (e.g., bicycles) that exist in many different colors. To investigate whether the availability of a core conceptual component (color) affects lexical access in language production, we conducted two experiments on the naming of visually presented HCD and LCD objects. Experiment 1 showed that, when naming latencies were matched for colored HCD and LCD objects, achromatic HCD objects were named more slowly than achromatic LCD objects. In Experiment 2 we recorded ERPs while participants performed a picture-naming task, in which achromatic target pictures were either preceded by an appropriately colored box (primed condition) or a black and white checkerboard (unprimed condition). We focused on the P2 component, which has been shown to reflect difficulty of lexical access in language production. Results showed that HCD resulted in slower object-naming and a more pronounced P2. Priming also yielded a more positive P2 but did not result in an RT difference. ERP waveforms on the P1, P2 and N300 components showed a priming by color-diagnosticity interaction, the effect of color priming being stronger for HCD objects than for LCD objects. The effect of color-diagnosticity on the P2 component suggests that the slower naming of achromatic HCD objects is (at least in part) due to more difficult lexical retrieval. Hence, the color attribute seems to affect lexical retrieval in HCD words. The interaction between priming and color-diagnosticity indicates that priming with a feature hinders lexical access, especially if the feature is a core feature of the target object. -
Fueller, C., Loescher, J., & Indefrey, P. (2013). Writing superiority in cued recall. Frontiers in Psychology, 4: 764. doi:10.3389/fpsyg.2013.00764.
Abstract
In list learning paradigms with free recall, written recall has been found to be less susceptible to intrusions of related concepts than spoken recall when the list items had been visually presented. This effect has been ascribed to the use of stored orthographic representations from the study phase during written recall (Kellogg, 2001). In other memory retrieval paradigms, by contrast, either better recall for modality-congruent items or an input-independent writing superiority effect have been found (Grabowski, 2005). In a series of four experiments using a paired associate learning paradigm we tested (a) whether output modality effects on verbal recall can be replicated in a paradigm that does not involve the rejection of semantically related intrusion words, (b) whether a possible superior performance for written recall was due to a slower response onset for writing as compared to speaking in immediate recall, and (c) whether the performance in paired associate word recall was correlated with performance in an additional episodic memory recall task. We observed better written recall in the first half of the recall phase, irrespective of the modality in which the material was presented upon encoding. An explanation for this effect based on longer response latencies for writing and hence more time for memory retrieval could be ruled out by showing that the effect persisted in delayed response versions of the task. Although there was some evidence that stored additional episodic information may contribute to the successful retrieval of associate words, this evidence was only found in the immediate response experiments and hence is most likely independent from the observed output modality effect. In sum, our results from a paired associate learning paradigm suggest that superior performance for written vs. spoken recall cannot be (solely) explained in terms of additional access to stored orthographic representations from the encoding phase. Our findings rather suggest a general writing-superiority effect at the time of memory retrieval. -
FitzPatrick, I., & Indefrey, P. (2010). Lexical competition in nonnative speech comprehension. Journal of Cognitive Neuroscience, 22, 1165-1178. doi:10.1162/jocn.2009.21301.
Abstract
Electrophysiological studies consistently find N400 effects of semantic incongruity in nonnative (L2) language comprehension. These N400 effects are often delayed compared with native (L1) comprehension, suggesting that semantic integration in one's second language occurs later than in one's first language. In this study, we investigated whether such a delay could be attributed to (1) intralingual lexical competition and/or (2) interlingual lexical competition. We recorded EEG from Dutch–English bilinguals who listened to English (L2) sentences in which the sentence-final word was (a) semantically fitting and (b) semantically incongruent or semantically incongruent but initially congruent due to sharing initial phonemes with (c) the most probable sentence completion within the L2 or (d) the L1 translation equivalent of the most probable sentence completion. We found an N400 effect in each of the semantically incongruent conditions. This N400 effect was significantly delayed to L2 words but not to L1 translation equivalents that were initially congruent with the sentence context. Taken together, these findings firstly demonstrate that semantic integration in nonnative listening can start based on word initial phonemes (i.e., before a single lexical candidate could have been selected based on the input) and secondly suggest that spuriously elicited L1 lexical candidates are not available for semantic integration in L2 speech comprehension. -
Gullberg, M., Roberts, L., Dimroth, C., Veroude, K., & Indefrey, P. (2010). Adult language learning after minimal exposure to an unknown natural language. In M. Gullberg, & P. Indefrey (
Eds. ), The earliest stages of language learning (pp. 5-24). Malden, MA: Wiley-Blackwell. -
Gullberg, M., Roberts, L., Dimroth, C., Veroude, K., & Indefrey, P. (2010). Adult language learning after minimal exposure to an unknown natural language. Language Learning, 60(S2), 5-24. doi:10.1111/j.1467-9922.2010.00598.x.
Abstract
Despite the literature on the role of input in adult second-language (L2) acquisition and on artificial and statistical language learning, surprisingly little is known about how adults break into a new language in the wild. This article reports on a series of behavioral and neuroimaging studies that examine what linguistic information adults can extract from naturalistic but controlled audiovisual input in an unknown and typologically distant L2 after minimal exposure (7–14 min) without instruction or training. We tested the stepwise development of segmental, phonotactic, and lexical knowledge in Dutch adults after minimal exposure to Mandarin Chinese and the role of item frequency, speech-associated gestures, and word length at the earliest stages of learning. In an exploratory neural connectivity study we further examined the neural correlates of word recognition in a new language, identifying brain regions whose connectivity was related to performance both before and after learning. While emphasizing the complexity of the learning task, the results suggest that the adult learning mechanism is more powerful than is normally assumed when faced with small amounts of complex, continuous audiovisual language input. -
Gullberg, M., & Indefrey, P. (
Eds. ). (2010). The earliest stages of language learning. Malden, MA: Wiley-Blackwell.Abstract
To understand the nature of language learning, the factors that influence it, and the mechanisms that govern it, it is crucial to study the very earliest stages of language learning. This volume provides a state-of-the art overview of what we know about the cognitive and neurobiological aspects of the adult capacity for language learning. It brings together studies from several fields that examine learning from multiple perspectives using various methods. The papers examine learning after anything from a few minutes to months of language exposure; they target the learning of both artificial and natural languages, involve both explicit and implicit learning, and cover linguistic domains ranging from phonology and semantics to morphosyntax. The findings will inform and extend further studies of language learning in multiple disciplines. -
Gullberg, M., & Indefrey, P. (
Eds. ). (2010). The earliest stages of language learning [Special Issue]. Language Learning, 60(Supplement s2). -
Indefrey, P., & Gullberg, M. (2010). Foreword. Language Learning, 60(S2), v. doi:10.1111/j.1467-9922.2010.00596.x.
Abstract
The articles in this volume are the result of an invited conference entitled "The Earliest Stages of Language Learning" held at the Max Planck Institute for Psycholinguistics in Nijmegen, The Netherlands, in October 2009. -
Indefrey, P., & Gullberg, M. (2010). The earliest stages of language learning: Introduction. Language Learning, 60(S2), 1-4. doi:10.1111/j.1467-9922.2010.00597.x.
-
Indefrey, P., & Gullberg, M. (2010). The earliest stages of language learning: Introduction. In M. Gullberg, & P. Indefrey (
Eds. ), The earliest stages of language learning (pp. 1-4). Malden, MA: Wiley-Blackwell. -
Van der Linden, M., Van Turennout, M., & Indefrey, P. (2010). Formation of category representations in superior temporal sulcus. Journal of Cognitive Neuroscience, 22, 1270-1282. doi:10.1162/jocn.2009.21270.
Abstract
The human brain contains cortical areas specialized in representing object categories. Visual experience is known to change the responses in these category-selective areas of the brain. However, little is known about how category training specifically affects cortical category selectivity. Here, we investigated the experience-dependent formation of object categories using an fMRI adaptation paradigm. Outside the scanner, subjects were trained to categorize artificial bird types into arbitrary categories (jungle birds and desert birds). After training, neuronal populations in the occipito-temporal cortex, such as the fusiform and the lateral occipital gyrus, were highly sensitive to perceptual stimulus differences. This sensitivity was not present for novel birds, indicating experience-related changes in neuronal representations. Neurons in STS showed category selectivity. A release from adaptation in STS was only observed when two birds in a pair crossed the category boundary. This dissociation could not be explained by perceptual similarities because the physical difference between birds from the same side of the category boundary and between birds from opposite sides of the category boundary was equal. Together, the occipito-temporal cortex and the STS have the properties suitable for a system that can both generalize across stimuli and discriminate between them. -
Veroude, K., Norris, D. G., Shumskaya, E., Gullberg, M., & Indefrey, P. (2010). Functional connectivity between brain regions involved in learning words of a new language. Brain and Language, 113, 21-27. doi:10.1016/j.bandl.2009.12.005.
Abstract
Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a model-free analysis for hemodynamic-response data. Functional connectivity, temporal correlations between hemodynamic activity of different areas, was assessed during rest before and after presentation of a movie of a weather report in Mandarin Chinese to Dutch participants. We hypothesized that learning of novel words might be associated with stronger functional connectivity of regions that are involved in phonological processing. Participants were divided into two groups, learners and non-learners, based on the scores on a post hoc word recognition task. The learners were able to recognize Chinese target words from the weather report, while the non-learners were not. In the first resting state period, before presentation of the movie, stronger functional connectivity was observed for the learners compared to the non-learners between the left supplementary motor area and the left precentral gyrus as well as the left insula and the left rolandic operculum, regions that are important for phonological rehearsal. After exposure to the weather report, functional connectivity between the left and right supramarginal gyrus was stronger for learners than for non-learners. This is consistent with a role of the left supramarginal gyrus in the storage of phonological forms. These results suggest both pre-existing and learning-induced differences between the two groups.
Share this page