Displaying 1 - 4 of 4
-
Carota, F., Kriegeskorte, N., Nili, H., & Pulvermüller, F. (2017). Representational Similarity Mapping of Distributional Semantics in Left Inferior Frontal, Middle Temporal, and Motor Cortex. Cerebral Cortex, 27(1), 294-309. doi:10.1093/cercor/bhw379.
Abstract
Language comprehension engages a distributed network of frontotemporal, parietal, and sensorimotor regions, but it is still unclear how meaning of words and their semantic relationships are represented and processed within these regions and to which degrees lexico-semantic representations differ between regions and semantic types. We used fMRI and representational similarity analysis to relate word-elicited multivoxel patterns to semantic similarity between action and object words. In left inferior frontal (BA 44-45-47), left posterior middle temporal and left precentral cortex, the similarity of brain response patterns reflected semantic similarity among action-related verbs, as well as across lexical classes-between action verbs and tool-related nouns and, to a degree, between action verbs and food nouns, but not between action verbs and animal nouns. Instead, posterior inferior temporal cortex exhibited a reverse response pattern, which reflected the semantic similarity among object-related nouns, but not action-related words. These results show that semantic similarity is encoded by a range of cortical areas, including multimodal association (e.g., anterior inferior frontal, posterior middle temporal) and modality-preferential (premotor) cortex and that the representational geometries in these regions are partly dependent on semantic type, with semantic similarity among action-related words crossing lexical-semantic category boundaries.Additional information
https://academic.oup.com/cercor/article/27/1/294/2888454#118783965 Supplementary Data -
Carota, F., Desmurget, M., & Sirigu, A. (2010). Forward Modeling Mediates Motor Awareness. In W. Sinnott-Armstrong, & L. Nadel (
Eds. ), Conscious Will and Responsibility - A Tribute to Benjamin Libet (pp. 97-108). Oxford: Oxford University Press.Abstract
This chapter focuses on the issue of motor awareness. It addresses three main questions: What exactly are we aware of when making a movement? What is the contribution of afferent and efferent signals to motor awareness? What are the neural bases of motor awareness? It reviews evidence that the motor system is mainly aware of its intention. As long as the goal is achieved, nothing reaches awareness about the kinematic details of the ongoing movements, even when substantial corrections have to be implemented to attain the intended state. The chapter also shows that motor awareness relies mainly on the central predictive computations carried out within the posterior parietal cortex. The outcome of these computations is contrasted with the peripheral reafferent input to build a veridical motor awareness. Some evidence exists that this process involves the premotor areas. -
Carota, F., Posada, A., Harquel, S., Delpuech, C., Bertrand, O., & Sirigu, A. (2010). Neural dynamics of the intention to speak. Cerebral Cortex, 20(8), 1891-1897. doi:10.1093/cercor/bhp255.
Abstract
When we talk we communicate our intentions. Although the origin of intentional action is debated in cognitive neuroscience, the question of how the brain generates the intention in speech remains still open. Using magnetoencephalography, we investigated the cortical dynamics engaged when healthy subjects attended to either their intention to speak or their actual speech. We found that activity in the right and left parietal cortex increased before subjects became aware of intending to speak. Within the time window of parietal activation, we also observed a transient left frontal activity in Broca's area, a crucial region for inner speech. During attention to speech, neural activity was detected in left prefrontal and temporal areas and in the temporoparietal junction. In agreement with previous results, our findings suggest that the parietal cortex plays a multimodal role in monitoring intentional mechanisms in both action and language. The coactivation of parietal regions and Broca's area may constitute the cortical circuit specific for controlling intentional processes during speech. -
Carota, F. (2006). Derivational morphology of Italian: Principles for formalization. Literary and Linguistic Computing, 21(SUPPL. 1), 41-53. doi:10.1093/llc/fql007.
Abstract
The present paper investigates the major derivational strategies underlying the formation of suffixed words in Italian, with the purpose of tackling the issue of their formalization. After having specified the theoretical cognitive premises that orient the work, the interacting component modules of the suffixation process, i.e. morphonology, morphotactics and affixal semantics, are explored empirically, by drawing ample naturally occurring data on a Corpus of written Italian. A special attention is paid to the semantic mechanisms that are involved into suffixation. Some semantic nuclei are identified for the major suffixed word types of Italian, which are due to word formation rules active at the synchronic level, and a semantic configuration of productive suffixes is suggested. A general framework is then sketched, which combines classical finite-state methods with a feature unification-based word grammar. More specifically, the semantic information specified for the affixal material is internalised into the structures of the Lexical Functional Grammar (LFG). The formal model allows us to integrate the various modules of suffixation. In particular, it treats, on the one hand, the interface between morphonology/morphotactics and semantics and, on the other hand, the interface between suffixation and inflection. Furthermore, since LFG exploits a hierarchically organised lexicon in order to structure the information regarding the affixal material, affixal co-selectional restrictions are advatageously constrained, avoiding potential multiple spurious analysis/generations.
Share this page