Publications

Displaying 1 - 3 of 3
  • Carota, F., Moseley, R., & Pulvermüller, F. (2012). Body-part-specific Representations of Semantic Noun Categories. Journal of Cognitive Neuroscience, 24(6), 1492-1509. doi:10.1162/jocn\_a\_00219.

    Abstract

    Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective–emotional semantic attributes of object-related nouns and action-related affordances of their referent objects.
  • Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2012). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22(7), 1634-1647. doi:10.1093/cercor/bhr238.

    Abstract

    Sensorimotor areas activate to action- and object-related words, but their role in abstract meaning processing is still debated. Abstract emotion words denoting body internal states are a critical test case because they lack referential links to objects. If actions expressing emotion are crucial for learning correspondences between word forms and emotions, emotion word–evoked activity should emerge in motor brain systems controlling the face and arms, which typically express emotions. To test this hypothesis, we recruited 18 native speakers and used event-related functional magnetic resonance imaging to compare brain activation evoked by abstract emotion words to that by face- and arm-related action words. In addition to limbic regions, emotion words indeed sparked precentral cortex, including body-part–specific areas activated somatotopically by face words or arm words. Control items, including hash mark strings and animal words, failed to activate precentral areas. We conclude that, similar to their role in action word processing, activation of frontocentral motor systems in the dorsal stream reflects the semantic binding of sign and meaning of abstract words denoting emotions and possibly other body internal states.
  • Carota, F., & Sirigu, A. (2008). Neural Bases of Sequence Processing in Action and Language. Language Learning, 58(1), 179-199. doi:10.1111/j.1467-9922.2008.00470.x.

    Abstract

    Real-time estimation of what we will do next is a crucial prerequisite
    of purposive behavior. During the planning of goal-oriented actions, for
    instance, the temporal and causal organization of upcoming subsequent
    moves needs to be predicted based on our knowledge of events. A forward
    computation of sequential structure is also essential for planning
    contiguous discourse segments and syntactic patterns in language. The
    neural encoding of sequential event knowledge and its domain dependency
    is a central issue in cognitive neuroscience. Converging evidence shows
    the involvement of a dedicated neural substrate, including the
    prefrontal cortex and Broca's area, in the representation and the
    processing of sequential event structure. After reviewing major
    representational models of sequential mechanisms in action and language,
    we discuss relevant neuropsychological and neuroimaging findings on the
    temporal organization of sequencing and sequence processing in both
    domains, suggesting that sequential event knowledge may be modularly
    organized through prefrontal and frontal subregions.

Share this page