Publications

Displaying 1 - 2 of 2
  • Carota, F., Kriegeskorte, N., Nili, H., & Pulvermüller, F. (2017). Representational Similarity Mapping of Distributional Semantics in Left Inferior Frontal, Middle Temporal, and Motor Cortex. Cerebral Cortex, 27(1), 294-309. doi:10.1093/cercor/bhw379.

    Abstract

    Language comprehension engages a distributed network of frontotemporal, parietal, and sensorimotor regions, but it is still unclear how meaning of words and their semantic relationships are represented and processed within these regions and to which degrees lexico-semantic representations differ between regions and semantic types. We used fMRI and representational similarity analysis to relate word-elicited multivoxel patterns to semantic similarity between action and object words. In left inferior frontal (BA 44-45-47), left posterior middle temporal and left precentral cortex, the similarity of brain response patterns reflected semantic similarity among action-related verbs, as well as across lexical classes-between action verbs and tool-related nouns and, to a degree, between action verbs and food nouns, but not between action verbs and animal nouns. Instead, posterior inferior temporal cortex exhibited a reverse response pattern, which reflected the semantic similarity among object-related nouns, but not action-related words. These results show that semantic similarity is encoded by a range of cortical areas, including multimodal association (e.g., anterior inferior frontal, posterior middle temporal) and modality-preferential (premotor) cortex and that the representational geometries in these regions are partly dependent on semantic type, with semantic similarity among action-related words crossing lexical-semantic category boundaries.
  • Carota, F., & Sirigu, A. (2008). Neural Bases of Sequence Processing in Action and Language. Language Learning, 58(1), 179-199. doi:10.1111/j.1467-9922.2008.00470.x.

    Abstract

    Real-time estimation of what we will do next is a crucial prerequisite
    of purposive behavior. During the planning of goal-oriented actions, for
    instance, the temporal and causal organization of upcoming subsequent
    moves needs to be predicted based on our knowledge of events. A forward
    computation of sequential structure is also essential for planning
    contiguous discourse segments and syntactic patterns in language. The
    neural encoding of sequential event knowledge and its domain dependency
    is a central issue in cognitive neuroscience. Converging evidence shows
    the involvement of a dedicated neural substrate, including the
    prefrontal cortex and Broca's area, in the representation and the
    processing of sequential event structure. After reviewing major
    representational models of sequential mechanisms in action and language,
    we discuss relevant neuropsychological and neuroimaging findings on the
    temporal organization of sequencing and sequence processing in both
    domains, suggesting that sequential event knowledge may be modularly
    organized through prefrontal and frontal subregions.

Share this page