Publications

Displaying 1 - 5 of 5
  • Meyer, A. S., Roelofs, A., & Brehm, L. (2019). Thirty years of Speaking: An introduction to the special issue. Language, Cognition and Neuroscience, 34(9), 1073-1084. doi:10.1080/23273798.2019.1652763.

    Abstract

    Thirty years ago, Pim Levelt published Speaking. During the 10th International Workshop on Language Production held at the Max Planck Institute for Psycholinguistics in Nijmegen in July 2018, researchers reflected on the impact of the book in the field, developments since its publication, and current research trends. The contributions in this Special Issue are closely related to the presentations given at the workshop. In this editorial, we sketch the research agenda set by Speaking, review how different aspects of this agenda are taken up in the papers in this volume and outline directions for further research.
  • Van Paridon, J., Roelofs, A., & Meyer, A. S. (2019). A lexical bottleneck in shadowing and translating of narratives. Language, Cognition and Neuroscience, 34(6), 803-812. doi:10.1080/23273798.2019.1591470.

    Abstract

    In simultaneous interpreting, speech comprehension and production processes have to be coordinated in close temporal proximity. To examine the coordination, Dutch-English bilingual participants were presented with narrative fragments recorded in English at speech rates varying from 100 to 200 words per minute and they were asked to translate the fragments into Dutch (interpreting) or repeat them in English (shadowing). Interpreting yielded more errors than shadowing at every speech rate, and increasing speech rate had a stronger negative effect on interpreting than on shadowing. To understand the differential effect of speech rate, a computational model was created of sub-lexical and lexical processes in comprehension and production. Computer simulations revealed that the empirical findings could be captured by assuming a bottleneck preventing simultaneous lexical selection in production and comprehension. To conclude, our empirical and modelling results suggest the existence of a lexical bottleneck that limits the translation of narratives at high speed.

    Additional information

    plcp_a_1591470_sm5183.docx
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1-38. doi:10.1017/S0140525X99001776.

    Abstract

    Preparing words in speech production is normally a fast and accurate process. We generate them two or three per second in fluent conversation; and overtly naming a clear picture of an object can easily be initiated within 600 msec after picture onset. The underlying process, however, is exceedingly complex. The theory reviewed in this target article analyzes this process as staged and feedforward. After a first stage of conceptual preparation, word generation proceeds through lexical selection, morphological and phonological encoding, phonetic encoding, and articulation itself. In addition, the speaker exerts some degree of output control, by monitoring of self-produced internal and overt speech. The core of the theory, ranging from lexical selection to the initiation of phonetic encoding, is captured in a computational model, called WEAVER + +. Both the theory and the computational model have been developed in interaction with reaction time experiments, particularly in picture naming or related word production paradigms, with the aim of accounting. for the real-time processing in normal word production. A comprehensive review of theory, model, and experiments is presented. The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). Multiple perspectives on lexical access [authors' response ]. Behavioral and Brain Sciences, 22, 61-72. doi:10.1017/S0140525X99451775.
  • Roelofs, A. (1997). The WEAVER model of word-form encoding in speech production. Cognition, 64, 249-284. doi:10.1016/S0010-0277(97)00027-9.

    Abstract

    Lexical access in speaking consists of two major steps: lemma retrieval and word-form encoding. In Roelofs (Roelofs, A. 1992a. Cognition 42. 107-142; Roelofs. A. 1993. Cognition 47, 59-87.), I described a model of lemma retrieval. The present paper extends this work by presenting a comprehensive model of the second access step, word-form encoding. The model is called WEAVER (Word-form Encoding by Activation and VERification). Unlike other models of word-form generation, WEAVER is able to provide accounts of response time data, particularly from the picture-word interference paradigm and the implicit priming paradigm. Its key features are (1) retrieval by spreading activation, (2) verification of activated information by a production rule, (3) a rightward incremental construction of phonological representations using a principle of active syllabification, syllables are constructed on the fly rather than stored with lexical items, (4) active competitive selection of syllabic motor programs using a mathematical formalism that generates response times and (5) the association of phonological speech errors with the selection of syllabic motor programs due to the failure of verification.

Share this page