Publications

Displaying 1 - 22 of 22
  • Piai, V., Roelofs, A., Acheson, D. J., & Takashima, A. (2013). Attention for speaking: Neural substrates of general and specific mechanisms for monitoring and control. Frontiers in Human Neuroscience, 7: 832. doi:10.3389/fnhum.2013.00832.

    Abstract

    Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.
  • Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2013). Distinct patterns of brain activity characterize lexical activation and competition in speech production [Abstract]. Journal of Cognitive Neuroscience, 25 Suppl., 106.

    Abstract

    A fundamental ability of speakers is to
    quickly retrieve words from long-term memory. According to a prominent theory, concepts activate multiple associated words, which enter into competition for selection. Previous electrophysiological studies have provided evidence for the activation of multiple alternative words, but did not identify brain responses refl ecting competition. We report a magnetoencephalography study examining the timing and neural substrates of lexical activation and competition. The degree of activation of competing words was
    manipulated by presenting pictures (e.g., dog) simultaneously with distractor
    words. The distractors were semantically related to the picture name (cat), unrelated (pin), or identical (dog). Semantic distractors are stronger competitors to the picture name, because they receive additional activation from the picture, whereas unrelated distractors do not. Picture naming times were longer with semantic than with unrelated and identical distractors. The patterns of phase-locked and non-phase-locked activity were distinct
    but temporally overlapping. Phase-locked activity in left middle temporal
    gyrus, peaking at 400 ms, was larger on unrelated than semantic and identical trials, suggesting differential effort in processing the alternative words activated by the picture-word stimuli. Non-phase-locked activity in the 4-10 Hz range between 400-650 ms in left superior frontal gyrus was larger on semantic than unrelated and identical trials, suggesting different
    degrees of effort in resolving the competition among the alternatives
    words, as refl ected in the naming times. These findings characterize distinct
    patterns of brain activity associated with lexical activation and competition
    respectively, and their temporal relation, supporting the theory that words are selected by competition.
  • Piai, V., & Roelofs, A. (2013). Working memory capacity and dual-task interference in picture naming. Acta Psychologica, 142, 332-342. doi:10.1016/j.actpsy.2013.01.006.
  • Roelofs, A., & Piai, V. (2013). Associative facilitation in the Stroop task: Comment on Mahon et al. Cortex, 49, 1767-1769. doi:10.1016/j.cortex.2013.03.001.

    Abstract

    First paragraph: A fundamental issue in psycholinguistics concerns how speakers retrieve intended words from long-term memory. According to a selection by competition account (e.g., Levelt
    et al., 1999), conceptually driven word retrieval involves the activation of a set of candidate words and a competitive selection
    of the intended word from this set.
  • Roelofs, A., Piai, V., & Schriefers, H. (2013). Context effects and selective attention in picture naming and word reading: Competition versus response exclusion. Language and Cognitive Processes, 28, 655-671. doi:10.1080/01690965.2011.615663.

    Abstract

    For several decades, context effects in picture naming and word reading have been extensively investigated. However, researchers have found no agreement on the explanation of the effects. Whereas it has long been assumed that several types of effect reflect competition in word selection, recently it has been argued that these effects reflect the exclusion of articulatory responses from an output buffer. Here, we first critically evaluate the findings on context effects in picture naming that have been taken as evidence against the competition account, and we argue that the findings are, in fact, compatible with the competition account. Moreover, some of the findings appear to challenge rather than support the response exclusion account. Next, we compare the response exclusion and competition accounts with respect to their ability to explain data on word reading. It appears that response exclusion does not account well for context effects on word reading times, whereas computer simulations reveal that a competition model like WEAVER++ accounts for the findings.

    Files private

    Request files
  • Roelofs, A., Dijkstra, T., & Gerakaki, S. (2013). Modeling of word translation: Activation flow from concepts to lexical items. Bilingualism: Language and Cognition, 16, 343-353. doi:10.1017/S1366728912000612.

    Abstract

    Whereas most theoretical and computational models assume a continuous flow of activation from concepts to lexical items in spoken word production, one prominent model assumes that the mapping of concepts onto words happens in a discrete fashion (Bloem & La Heij, 2003). Semantic facilitation of context pictures on word translation has been taken to support the discrete-flow model. Here, we report results of computer simulations with the continuous-flow WEAVER++ model (Roelofs, 1992, 2006) demonstrating that the empirical observation taken to be in favor of discrete models is, in fact, only consistent with those models and equally compatible with more continuous models of word production by monolingual and bilingual speakers. Continuous models are specifically and independently supported by other empirical evidence on the effect of context pictures on native word production.
  • Roelofs, A., Piai, V., & Schriefers, H. (2013). Selection by competition in word production: Rejoinder to Janssen (2012). Language and Cognitive Processes, 28, 679-683. doi:10.1080/01690965.2013.770890.

    Abstract

    Roelofs, Piai, and Schriefers argue that several findings on the effect of distractor words and pictures in producing words support a selection-by-competition account and challenge a non-competitive response-exclusion account. Janssen argues that the findings do not challenge response exclusion, and he conjectures that both competitive and non-competitive mechanisms underlie word selection. Here, we maintain that the findings do challenge the response-exclusion account and support the assumption of a single competitive mechanism underlying word selection.

    Files private

    Request files
  • Shao, Z., Meyer, A. S., & Roelofs, A. (2013). Selective and nonselective inhibition of competitors in picture naming. Memory & Cognition, 41(8), 1200-1211. doi:10.3758/s13421-013-0332-7.

    Abstract

    The present study examined the relation between nonselective inhibition and selective inhibition in picture naming performance. Nonselective inhibition refers to the ability to suppress any unwanted response, whereas selective inhibition refers to the ability to suppress specific competing responses. The degree of competition in picture naming was manipulated by presenting targets along with distractor words that could be semantically related (e.g., a picture of a dog combined with the word cat) or unrelated (tree) to the picture name. The mean naming response time (RT) was longer in the related than in the unrelated condition, reflecting semantic interference. Delta plot analyses showed that participants with small mean semantic interference effects employed selective inhibition more effectively than did participants with larger semantic interference effects. The participants were also tested on the stop-signal task, which taps nonselective inhibition. Their performance on this task was correlated with their mean naming RT but, importantly, not with the selective inhibition indexed by the delta plot analyses and the magnitude of the semantic interference effect. These results indicate that nonselective inhibition ability and selective inhibition of competitors in picture naming are separable to some extent.
  • Korvorst, M., Roelofs, A., & Levelt, W. J. M. (2006). Incrementality in naming and reading complex numerals: Evidence from eyetracking. Quarterly Journal of Experimental Psychology, 59(2), 296-311. doi:10.1080/17470210500151691.

    Abstract

    Individuals speak incrementally when they interleave planning and articulation. Eyetracking, along with the measurement of speech onset latencies, can be used to gain more insight into the degree of incrementality adopted by speakers. In the current article, two eyetracking experiments are reported in which pairs of complex numerals were named (arabic format, Experiment 1) or read aloud (alphabetic format, Experiment 2) as house numbers and as clock times. We examined whether the degree of incrementality is differentially influenced by the production task (naming vs. reading) and mode (house numbers vs. clock time expressions), by comparing gaze durations and speech onset latencies. In both tasks and modes, dissociations were obtained between speech onset latencies (reflecting articulation) and gaze durations (reflecting planning), indicating incrementality. Furthermore, whereas none of the factors that determined gaze durations were reflected in the reading and naming latencies for the house numbers, the dissociation between gaze durations and response latencies for the clock times concerned mainly numeral length in both tasks. These results suggest that the degree of incrementality is influenced by the type of utterance (house number vs. clock time) rather than by task (reading vs. naming). The results highlight the importance of the utterance structure in determining the degree of incrementality.
  • Roelofs, A. (2006). The influence of spelling on phonological encoding in word reading, object naming, and word generation. Psychonomic Bulletin & Review, 13(1), 33-37.

    Abstract

    Does the spelling of a word mandatorily constrain spoken word production, or does it do so only
    when spelling is relevant for the production task at hand? Damian and Bowers (2003) reported spelling
    effects in spoken word production in English using a prompt–response word generation task. Preparation
    of the response words was disrupted when the responses shared initial phonemes that differed
    in spelling, suggesting that spelling constrains speech production mandatorily. The present experiments,
    conducted in Dutch, tested for spelling effects using word production tasks in which spelling
    was clearly relevant (oral reading in Experiment 1) or irrelevant (object naming and word generation
    in Experiments 2 and 3, respectively). Response preparation was disrupted by spelling inconsistency
    only with the word reading, suggesting that the spelling of a word constrains spoken word production
    in Dutch only when it is relevant for the word production task at hand.
  • Roelofs, A. (2006). Context effects of pictures and words in naming objects, reading words, and generating simple phrases. Quarterly Journal of Experimental Psychology, 59(10), 1764-1784. doi:10.1080/17470210500416052.

    Abstract

    In five language production experiments it was examined which aspects of words are activated in memory by context pictures and words. Context pictures yielded Stroop-like and semantic effects on response times when participants generated gender-marked noun phrases in response to written words (Experiment 1A). However, pictures yielded no such effects when participants simply read aloud the noun phrases (Experiment 2). Moreover, pictures yielded a gender congruency effect in generating gender-marked noun phrases in response to the written words (Experiments 3A and 3B). These findings suggest that context pictures activate lemmas (i.e., representations of syntactic properties), which leads to effects only when lemmas are needed to generate a response (i.e., in Experiments 1A, 3A, and 3B, but not in Experiment 2). Context words yielded Stroop-like and semantic effects in picture naming (Experiment 1B). Moreover, words yielded Stroop-like but no semantic effects in reading nouns (Experiment 4) and in generating noun phrases (Experiment 5). These findings suggest that context words activate the lemmas and forms of their names, which leads to semantic effects when lemmas are required for responding (Experiment 1B) but not when only the forms are required (Experiment 4). WEAVER++ simulations of the results are presented.
  • Roelofs, A., Van Turennout, M., & Coles, M. G. H. (2006). Anterior cingulate cortex activity can be independent of response conflict in stroop-like tasks. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13884-13889. doi:10.1073/pnas.0606265103.

    Abstract

    Cognitive control includes the ability to formulate goals and plans of action and to follow these while facing distraction. Previous neuroimaging studies have shown that the presence of conflicting response alternatives in Stroop-like tasks increases activity in dorsal anterior cingulate cortex (ACC), suggesting that the ACC is involved in cognitive control. However, the exact nature of ACC function is still under debate. The prevailing conflict detection hypothesis maintains that the ACC is involved in performance monitoring. According to this view, ACC activity reflects the detection of response conflict and acts as a signal that engages regulative processes subserved by lateral prefrontal brain regions. Here, we provide evidence from functional MRI that challenges this view and favors an alternative view, according to which the ACC has a role in regulation itself. Using an arrow–word Stroop task, subjects responded to incongruent, congruent, and neutral stimuli. A critical prediction made by the conflict detection hypothesis is that ACC activity should be increased only when conflicting response alternatives are present. Our data show that ACC responses are larger for neutral than for congruent stimuli, in the absence of response conflict. This result demonstrates the engagement of the ACC in regulation itself. A computational model of Stroop-like performance instantiating a version of the regulative hypothesis is shown to account for our findings.
  • Roelofs, A. (2006). Functional architecture of naming dice, digits, and number words. Language and Cognitive Processes, 21(1/2/3), 78-111. doi:10.1080/01690960400001846.

    Abstract

    Five chronometric experiments examined the functional architecture of naming dice, digits, and number words. Speakers named pictured dice, Arabic digits, or written number words, while simultaneously trying to ignore congruent or incongruent dice, digit, or number word distractors presented at various stimulus onset asynchronies (SOAs). Stroop-like interference and facilitation effects were obtained from digits and words on dice naming latencies, but not from dice on digit and word naming latencies. In contrast, words affected digit naming latencies and digits affected word naming latencies to the same extent. The peak of the interference was always around SOA = 0 ms, whereas facilitation was constant across distractor-first SOAs. These results suggest that digit naming is achieved like word naming rather than dice naming. WEAVER++simulations of the results are reported.
  • Roelofs, A. (2006). Modeling the control of phonological encoding in bilingual speakers. Bilingualism: Language and Cognition, 9(2), 167-176. doi:10.1017/S1366728906002513.

    Abstract

    Phonological encoding is the process by which speakers retrieve phonemic segments for morphemes from memory and use
    the segments to assemble phonological representations of words to be spoken. When conversing in one language, bilingual
    speakers have to resist the temptation of encoding word forms using the phonological rules and representations of the other
    language. We argue that the activation of phonological representations is not restricted to the target language and that the
    phonological representations of languages are not separate. We advance a view of bilingual control in which condition-action
    rules determine what is done with the activated phonological information depending on the target language. This view is
    computationally implemented in the WEAVER++ model. We present WEAVER++ simulations of the cognate facilitation effect
    (Costa, Caramazza and Sebasti´an-Gall´es, 2000) and the between-language phonological facilitation effect of spoken
    distractor words in object naming (Hermans, Bongaerts, de Bot and Schreuder, 1998).
  • Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2004). Stem complexity and inflectional encoding in language production. Journal of Psycholinguistic Research, 33(5), 365-381. doi:10.1023/B:JOPR.0000039546.60121.a8.

    Abstract

    Three experiments are reported that examined whether stem complexity plays a role in inflecting polymorphemic words in language production. Experiment 1 showed that preparation effects for words with polymorphemic stems are larger when they are produced among words with constant inflectional structures compared to words with variable inflectional structures and simple stems. This replicates earlier findings for words with monomorphemic stems (Janssen et al., 2002). Experiments 2 and 3 showed that when inflectional structure is held constant, the preparation effects are equally large with simple and compound stems, and with compound and complex adjectival stems. These results indicate that inflectional encoding is blind to the complexity of the stem, which suggests that specific inflectional rather than generic morphological frames guide the generation of inflected forms in speaking words.
  • Levelt, W. J. M., Meyer, A. S., & Roelofs, A. (2004). Relations of lexical access to neural implementation and syntactic encoding [author's response]. Behavioral and Brain Sciences, 27, 299-301. doi:10.1017/S0140525X04270078.

    Abstract

    How can one conceive of the neuronal implementation of the processing model we proposed in our target article? In his commentary (Pulvermüller 1999, reprinted here in this issue), Pulvermüller makes various proposals concerning the underlying neural mechanisms and their potential localizations in the brain. These proposals demonstrate the compatibility of our processing model and current neuroscience. We add further evidence on details of localization based on a recent meta-analysis of neuroimaging studies of word production (Indefrey & Levelt 2000). We also express some minor disagreements with respect to Pulvermüller’s interpretation of the “lemma” notion, and concerning his neural modeling of phonological code retrieval. Branigan & Pickering discuss important aspects of syntactic encoding, which was not the topic of the target article. We discuss their well-taken proposal that multiple syntactic frames for a single verb lemma are represented as independent nodes, which can be shared with other verbs, such as accounting for syntactic priming in speech production. We also discuss how, in principle, the alternative multiple-frame-multiplelemma account can be tested empirically. The available evidence does not seem to support that account.
  • Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2004). Naming analog clocks conceptually facilitates naming digital clocks. Brain and Language, 90(1-3), 434-440. doi:10.1016/S0093-934X(03)00454-1.

    Abstract

    This study investigates how speakers of Dutch compute and produce relative time expressions. Naming digital clocks (e.g., 2:45, say ‘‘quarter to three’’) requires conceptual operations on the minute and hour information for the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition priming paradigm. Participants named analog clocks (the primes) directly before naming digital clocks (the targets). The targets referred to the hour (e.g., 2:00), half past the hour (e.g., 2:30), or the coming hour (e.g., 2:45). The primes differed from the target in one or two hour and in five or ten minutes. Digital clock naming latencies were shorter with a five- than with a ten-min difference between prime and target, but the difference in hour had no effect. Moreover, the distance in minutes had only an effect for half past the hour and the coming hour, but not for the hour. These findings suggest that conceptual facilitation occurs when conceptual transformations are shared between prime and target in telling time.
  • Roelofs, A. (2004). Seriality of phonological encoding in naming objects and reading their names. Memory & Cognition, 32(2), 212-222.

    Abstract

    There is a remarkable lack of research bringing together the literatures on oral reading and speaking.
    As concerns phonological encoding, both models of reading and speaking assume a process of segmental
    spellout for words, which is followed by serial prosodification in models of speaking (e.g., Levelt,
    Roelofs, & Meyer, 1999). Thus, a natural place to merge models of reading and speaking would be
    at the level of segmental spellout. This view predicts similar seriality effects in reading and object naming.
    Experiment 1 showed that the seriality of encoding inside a syllable revealed in previous studies
    of speaking is observed for both naming objects and reading their names. Experiment 2 showed that
    both object naming and reading exhibit the seriality of the encoding of successive syllables previously
    observed for speaking. Experiment 3 showed that the seriality is also observed when object naming and
    reading trials are mixed rather than tested separately, as in the first two experiments. These results suggest
    that a serial phonological encoding mechanism is shared between naming objects and reading
    their names.
  • Roelofs, A. (2004). The seduced speaker: Modeling of cognitive control. In A. Belz, R. Evans, & P. Piwek (Eds.), Natural language generation. (pp. 1-10). Berlin: Springer.

    Abstract

    Although humans are the ultimate “natural language generators”, the area of psycholinguistic modeling has been somewhat underrepresented in recent approaches to Natural Language Generation in computer science. To draw attention to the area and illustrate its potential relevance to Natural Language Generation, I provide an overview of recent work on psycholinguistic modeling of language production together with some key empirical findings, state-of-the-art experimental techniques, and their historical roots. The techniques include analyses of speech-error corpora, chronometric analyses, eyetracking, and neuroimaging.
    The overview is built around the issue of cognitive control in natural language generation, concentrating on the production of single words, which is an essential ingredient of the generation of larger utterances. Most of the work exploited the fact that human speakers are good but not perfect at resisting temptation, which has provided some critical clues about the nature of the underlying system.
  • Roelofs, A. (2004). Error biases in spoken word planning and monitoring by aphasic and nonaphasic speakers: Comment on Rapp and Goldrick,2000. Psychological Review, 111(2), 561-572. doi:10.1037/0033-295X.111.2.561.

    Abstract

    B. Rapp and M. Goldrick (2000) claimed that the lexical and mixed error biases in picture naming by
    aphasic and nonaphasic speakers argue against models that assume a feedforward-only relationship
    between lexical items and their sounds in spoken word production. The author contests this claim by
    showing that a feedforward-only model like WEAVER ++ (W. J. M. Levelt, A. Roelofs, & A. S. Meyer,
    1999b) exhibits the error biases in word planning and self-monitoring. Furthermore, it is argued that
    extant feedback accounts of the error biases and relevant chronometric effects are incompatible.
    WEAVER ++ simulations with self-monitoring revealed that this model accounts for the chronometric
    data, the error biases, and the influence of the impairment locus in aphasic speakers.
  • Roelofs, A. (2004). Comprehension-based versus production-internal feedback in planning spoken words: A rejoinder to Rapp and Goldrick, 2004. Psychological Review, 111(2), 579-580. doi:10.1037/0033-295X.111.2.579.

    Abstract

    WEAVER++ has no backward links in its form-production network and yet is able to explain the lexical
    and mixed error biases and the mixed distractor latency effect. This refutes the claim of B. Rapp and M.
    Goldrick (2000) that these findings specifically support production-internal feedback. Whether their restricted interaction account model can also provide a unified account of the error biases and latency effect remains to be shown.
  • Roelofs, A., & Schiller, N. (2004). Produzieren von Ein- und Mehrwortäusserungen. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 655-658). Göttingen: Vandenhoeck & Ruprecht.

Share this page