Publications

Displaying 1 - 11 of 11
  • Jongman, S. R., Roelofs, A., & Lewis, A. G. (2020). Attention for speaking: Prestimulus motor-cortical alpha power predicts picture naming latencies. Journal of Cognitive Neuroscience, 32(5), 747-761. doi:10.1162/jocn_a_01513.

    Abstract

    There is a range of variability in the speed with which a single speaker will produce the same word from one instance to another. Individual differences studies have shown that the speed of production and the ability to maintain attention are related. This study investigated whether fluctuations in production latencies can be explained by spontaneous fluctuations in speakers' attention just prior to initiating speech planning. A relationship between individuals' incidental attentional state and response performance is well attested in visual perception, with lower prestimulus alpha power associated with faster manual responses. Alpha is thought to have an inhibitory function: Low alpha power suggests less inhibition of a specific brain region, whereas high alpha power suggests more inhibition. Does the same relationship hold for cognitively demanding tasks such as word production? In this study, participants named pictures while EEG was recorded, with alpha power taken to index an individual's momentary attentional state. Participants' level of alpha power just prior to picture presentation and just prior to speech onset predicted subsequent naming latencies. Specifically, higher alpha power in the motor system resulted in faster speech initiation. Our results suggest that one index of a lapse of attention during speaking is reduced inhibition of motor-cortical regions: Decreased motor-cortical alpha power indicates reduced inhibition of this area while early stages of production planning unfold, which leads to increased interference from motor-cortical signals and longer naming latencies. This study shows that the language production system is not impermeable to the influence of attention.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2020). Language selection contributes to intrusion errors in speaking: Evidence from picture naming. Bilingualism: Language and Cognition, 23, 788-800. doi:10.1017/S1366728919000683.

    Abstract

    Bilinguals usually select the right language to speak for the particular context they are in, but sometimes the nontarget language intrudes. Despite a large body of research into language selection and language control, it remains unclear where intrusion errors originate from. These errors may be due to incorrect selection of the nontarget language at the conceptual level, or be a consequence of erroneous word selection (despite correct language selection) at the lexical level. We examined the former possibility in two language switching experiments using a manipulation that supposedly affects language selection on the conceptual level, namely whether the conversational language context was associated with the target language (congruent) or with the alternative language (incongruent) on a trial. Both experiments showed that language intrusion errors occurred more often in incongruent than in congruent contexts, providing converging evidence that language selection during concept preparation is one driving force behind language intrusion.
  • Zheng, X., Roelofs, A., Erkan, H., & Lemhöfer, K. (2020). Dynamics of inhibitory control during bilingual speech production: An electrophysiological study. Neuropsychologia, 140: 107387. doi:10.1016/j.neuropsychologia.2020.107387.

    Abstract

    Bilingual speakers have to control their languages to avoid interference, which may be achieved by enhancing the target language and/or inhibiting the nontarget language. Previous research suggests that bilinguals use inhibition (e.g., Jackson et al., 2001), which should be reflected in the N2 component of the event-related potential (ERP) in the EEG. In the current study, we investigated the dynamics of inhibitory control by measuring the N2 during language switching and repetition in bilingual picture naming. Participants had to name pictures in Dutch or English depending on the cue. A run of same-language trials could be short (two or three trials) or long (five or six trials). We assessed whether RTs and N2 changed over the course of same-language runs, and at a switch between languages. Results showed that speakers named pictures more quickly late as compared to early in a run of same-language trials. Moreover, they made a language switch more quickly after a long run than after a short run. This run-length effect was only present in the first language (L1), not in the second language (L2). In ERPs, we observed a widely distributed switch effect in the N2, which was larger after a short run than after a long run. This effect was only present in the L2, not in the L1, although the difference was not significant between languages. In contrast, the N2 was not modulated during a same-language run. Our results suggest that the nontarget language is inhibited at a switch, but not during the repeated use of the target language.

    Additional information

    Data availability

    Files private

    Request files
  • Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta Psychologica, 191, 124-130. doi:10.1016/j.actpsy.2018.09.008.

    Abstract

    It is unclear whether cognitive and motor control are parallel and interactive or serial and independent processes. According to one view, cognitive control refers to a set of modality-nonspecific processes that act on supramodal representations and precede response modality-specific motor processes. An alternative view is that cognitive control represents a set of modality-specific operations that act directly on motor-related representations, implying dependence of cognitive control on motor control. Here, we examined the influence of response modality (vocal vs. manual) on three well-established subcomponent processes of cognitive control: shifting, inhibiting, and updating. We observed effects of all subcomponent processes in reaction times. The magnitude of these effects did not differ between response modalities for shifting and inhibiting, in line with a serial, supramodal view. However, the magnitude of the updating effect differed between modalities, in line with an interactive, modality-specific view. These results suggest that updating represents a modality-specific operation that depends on motor control, whereas shifting and inhibiting represent supramodal operations that act independently of motor control.
  • Sikora, K., & Roelofs, A. (2018). Switching between spoken language-production tasks: the role of attentional inhibition and enhancement. Language, Cognition and Neuroscience, 33(7), 912-922. doi:10.1080/23273798.2018.1433864.

    Abstract

    Since Pillsbury [1908. Attention. London: Swan Sonnenschein & Co], the issue of whether attention operates through inhibition or enhancement has been on the scientific agenda. We examined whether overcoming previous attentional inhibition or enhancement is the source of asymmetrical switch costs in spoken noun-phrase production and colour-word Stroop tasks. In Experiment 1, using bivalent stimuli, we found asymmetrical costs in response times for switching between long and short phrases and between Stroop colour naming and reading. However, in Experiment 2, using bivalent stimuli for the weaker tasks (long phrases, colour naming) and univalent stimuli for the stronger tasks (short phrases, word reading), we obtained an asymmetrical switch cost for phrase production, but a symmetrical cost for Stroop. The switch cost evidence was quantified using Bayesian statistical analyses. Our findings suggest that switching between phrase types involves inhibition, whereas switching between colour naming and reading involves enhancement. Thus, the attentional mechanism depends on the language-production task involved. The results challenge theories of task switching that assume only one attentional mechanism, inhibition or enhancement, rather than both mechanisms.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Piai, V., Roelofs, A., & Schriefers, H. (2011). Semantic interference in immediate and delayed naming and reading: Attention and task decisions. Journal of Memory and Language, 64, 404-423. doi:10.1016/j.jml.2011.01.004.

    Abstract

    Disagreement exists about whether lexical selection in word production is a competitive process. Competition predicts semanticinterference from distractor words in immediate but not in delayed picture naming. In contrast, Janssen, Schirm, Mahon, and Caramazza (2008) obtained semanticinterference in delayed picture naming when participants had to decide between picture naming and oral reading depending on the distractor word’s colour. We report three experiments that examined the role of such taskdecisions. In a single-task situation requiring picture naming only (Experiment 1), we obtained semanticinterference in immediate but not in delayednaming. In a task-decision situation (Experiments 2 and 3), no semantic effects were obtained in immediate and delayed picture naming and word reading using either the materials of Experiment 1 or the materials of Janssen et al. (2008). We present an attentional account in which taskdecisions may hide or reveal semanticinterference from lexical competition depending on the amount of parallelism between task-decision and picture–word processing.
  • Roelofs, A., & Piai, V. (2011). Attention demands of spoken word planning: A review. Frontiers in Psychology, 2, 307. doi:10.1037/a0023328.

    Abstract

    E. Dhooge and R. J. Hartsuiker (2010) reported experiments showing that picture naming takes longer with low- than high-frequency distractor words, replicating M. Miozzo and A. Caramazza (2003). In addition, they showed that this distractor-frequency effect disappears when distractors are masked or preexposed. These findings were taken to refute models like WEAVER++ (A. Roelofs, 2003) in which words are selected by competition. However, Dhooge and Hartsuiker do not take into account that according to this model, picture-word interference taps not only into word production but also into attentional processes. Here, the authors indicate that WEAVER++ contains an attentional mechanism that accounts for the distractor-frequency effect (A. Roelofs, 2005). Moreover, the authors demonstrate that the model accounts for the influence of masking and preexposure, and does so in a simpler way than the response exclusion through self-monitoring account advanced by Dhooge and Hartsuiker
  • Roelofs, A., Piai, V., & Garrido Rodriguez, G. (2011). Attentional inhibition in bilingual naming performance: Evidence from delta-plot analyses. Frontiers in Psychology, 2, 184. doi:10.3389/fpsyg.2011.00184.

    Abstract

    It has been argued that inhibition is a mechanism of attentional control in bilingual language performance. Evidence suggests that effects of inhibition are largest in the tail of a response time (RT) distribution in non-linguistic and monolingual performance domains. We examined this for bilingual performance by conducting delta-plot analyses of naming RTs. Dutch-English bilingual speakers named pictures using English while trying to ignore superimposed neutral Xs or Dutch distractor words that were semantically related, unrelated, or translations. The mean RTs revealed semantic, translation, and lexicality effects. The delta plots leveled off with increasing RT, more so when the mean distractor effect was smaller as compared with larger. This suggests that the influence of inhibition is largest toward the distribution tail, corresponding to what is observed in other performance domains. Moreover, the delta plots suggested that more inhibition was applied by high- than low-proficiency individuals in the unrelated than the other distractor conditions. These results support the view that inhibition is a domain-general mechanism that may be optionally engaged depending on the prevailing circumstances.
  • Roelofs, A., Piai, V., & Schriefers, H. (2011). Selective attention and distractor frequency in naming performance: Comment on Dhooge and Hartsuiker (2010). Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1032-1038. doi:10.1037/a0023328.

    Abstract

    E. Dhooge and R. J. Hartsuiker (2010) reported experiments showing that picture naming takes longer with low- than high-frequency distractor words, replicating M. Miozzo and A. Caramazza (2003). In addition, they showed that this distractor-frequency effect disappears when distractors are masked or preexposed. These findings were taken to refute models like WEAVER++ (A. Roelofs, 2003) in which words are selected by competition. However, Dhooge and Hartsuiker do not take into account that according to this model, picture-word interference taps not only into word production but also into attentional processes. Here, the authors indicate that WEAVER++ contains an attentional mechanism that accounts for the distractor-frequency effect (A. Roelofs, 2005). Moreover, the authors demonstrate that the model accounts for the influence of masking and preexposure, and does so in a simpler way than the response exclusion through self-monitoring account advanced by Dhooge and Hartsuiker

Share this page