Publications

Displaying 1 - 3 of 3
  • Barlas, P., Kyriakou, K., Guest, O., Kleanthous, S., & Otterbacher, J. (2021). To "see" is to stereotype: Image tagging algorithms, gender recognition, and the accuracy-fairness trade-off. Proceedings of the ACM on Human Computer Interaction, 4(CSCW3): 32. doi:10.1145/3432931.

    Abstract

    Machine-learned computer vision algorithms for tagging images are increasingly used by developers and researchers, having become popularized as easy-to-use "cognitive services." Yet these tools struggle with gender recognition, particularly when processing images of women, people of color and non-binary individuals. Socio-technical researchers have cited data bias as a key problem; training datasets often over-represent images of people and contexts that convey social stereotypes. The social psychology literature explains that people learn social stereotypes, in part, by observing others in particular roles and contexts, and can inadvertently learn to associate gender with scenes, occupations and activities. Thus, we study the extent to which image tagging algorithms mimic this phenomenon. We design a controlled experiment, to examine the interdependence between algorithmic recognition of context and the depicted person's gender. In the spirit of auditing to understand machine behaviors, we create a highly controlled dataset of people images, imposed on gender-stereotyped backgrounds. Our methodology is reproducible and our code publicly available. Evaluating five proprietary algorithms, we find that in three, gender inference is hindered when a background is introduced. Of the two that "see" both backgrounds and gender, it is the one whose output is most consistent with human stereotyping processes that is superior in recognizing gender. We discuss the accuracy--fairness trade-off, as well as the importance of auditing black boxes in better understanding this double-edged sword.
  • Birhane, A., & Guest, O. (2021). Towards decolonising computational sciences. Kvinder, Køn & Forskning, 29(2), 60-73. doi:10.7146/kkf.v29i2.124899.

    Abstract

    This article sets out our perspective on how to begin the journey of decolonising computational fi elds, such as data and cognitive sciences. We see this struggle as requiring two basic steps: a) realisation that the present-day system has inherited, and still enacts, hostile, conservative, and oppressive behaviours and principles towards women of colour; and b) rejection of the idea that centring individual people is a solution to system-level problems. The longer we ignore these two steps, the more “our” academic system maintains its toxic structure, excludes, and harms Black women and other minoritised groups. This also keeps the door open to discredited pseudoscience, like eugenics and physiognomy. We propose that grappling with our fi elds’ histories and heritage holds the key to avoiding mistakes of the past. In contrast to, for example, initiatives such as “diversity boards”, which can be harmful because they superfi cially appear reformatory but nonetheless center whiteness and maintain the status quo. Building on the work of many women of colour, we hope to advance the dialogue required to build both a grass-roots and a top-down re-imagining of computational sciences — including but not limited to psychology, neuroscience, cognitive science, computer science, data science, statistics, machine learning, and artifi cial intelligence. We aspire to progress away from
    these fi elds’ stagnant, sexist, and racist shared past into an ecosystem that welcomes and nurtures
    demographically diverse researchers and ideas that critically challenge the status quo.
  • Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4), 789-802. doi:10.1177/1745691620970585.

    Abstract

    Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all.

Share this page