Displaying 1 - 5 of 5
-
Loke*, J., Seijdel*, N., Snoek, L., Sorensen, L., Van de Klundert, R., Van der Meer, M., Quispel, E., Cappaert, N., & Scholte, H. S. (2024). Human visual cortex and deep convolutional neural network care deeply about object background. Journal of Cognitive Neuroscience, 36(3), 551-566. doi:10.1162/jocn_a_02098.
Abstract
* These authors contributed equally/shared first author
Deep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task. Previous physiological studies on object categorization have highlighted the importance of figure-ground segregation—the ability to distinguish objects from their backgrounds. Therefore, we investigated whether figure-ground segregation could explain the predictive power of DCNNs. Using a stimulus set consisting of identical target objects embedded in different backgrounds, we examined the influence of object background versus object category within both EEG and DCNN activity. Crucially, the recombination of naturalistic objects and experimentally controlled backgrounds creates a challenging and naturalistic task, while retaining experimental control. Our results showed that early EEG activity (< 100 msec) and early DCNN layers represent object background rather than object category. We also found that the ability of DCNNs to predict EEG activity is primarily influenced by how both systems process object backgrounds, rather than object categories. We demonstrated the role of figure-ground segregation as a potential prerequisite for recognition of object features, by contrasting the activations of trained and untrained (i.e., random weights) DCNNs. These findings suggest that both human visual cortex and DCNNs prioritize the segregation of object backgrounds and target objects to perform object categorization. Altogether, our study provides new insights into the mechanisms underlying object categorization as we demonstrated that both human visual cortex and DCNNs care deeply about object background.Additional information
link to preprint -
Seijdel, N., Schoffelen, J.-M., Hagoort, P., & Drijvers, L. (2024). Attention drives visual processing and audiovisual integration during multimodal communication. The Journal of Neuroscience, 44(10): e0870232023. doi:10.1523/JNEUROSCI.0870-23.2023.
Abstract
During communication in real-life settings, our brain often needs to integrate auditory and visual information, and at the same time actively focus on the relevant sources of information, while ignoring interference from irrelevant events. The interaction between integration and attention processes remains poorly understood. Here, we use rapid invisible frequency tagging (RIFT) and magnetoencephalography (MEG) to investigate how attention affects auditory and visual information processing and integration, during multimodal communication. We presented human participants (male and female) with videos of an actress uttering action verbs (auditory; tagged at 58 Hz) accompanied by two movie clips of hand gestures on both sides of fixation (attended stimulus tagged at 65 Hz; unattended stimulus tagged at 63 Hz). Integration difficulty was manipulated by a lower-order auditory factor (clear/degraded speech) and a higher-order visual semantic factor (matching/mismatching gesture). We observed an enhanced neural response to the attended visual information during degraded speech compared to clear speech. For the unattended information, the neural response to mismatching gestures was enhanced compared to matching gestures. Furthermore, signal power at the intermodulation frequencies of the frequency tags, indexing non-linear signal interactions, was enhanced in left frontotemporal and frontal regions. Focusing on LIFG (Left Inferior Frontal Gyrus), this enhancement was specific for the attended information, for those trials that benefitted from integration with a matching gesture. Together, our results suggest that attention modulates audiovisual processing and interaction, depending on the congruence and quality of the sensory input.Additional information
link to preprint -
Seijdel, N., Marshall, T. R., & Drijvers, L. (2023). Rapid invisible frequency tagging (RIFT): A promising technique to study neural and cognitive processing using naturalistic paradigms. Cerebral Cortex, 33(5), 1626-1629. doi:10.1093/cercor/bhac160.
Abstract
Frequency tagging has been successfully used to investigate selective stimulus processing in electroencephalography (EEG) or magnetoencephalography (MEG) studies. Recently, new projectors have been developed that allow for frequency tagging at higher frequencies (>60 Hz). This technique, rapid invisible frequency tagging (RIFT), provides two crucial advantages over low-frequency tagging as (i) it leaves low-frequency oscillations unperturbed, and thus open for investigation, and ii) it can render the tagging invisible, resulting in more naturalistic paradigms and a lack of participant awareness. The development of this technique has far-reaching implications as oscillations involved in cognitive processes can be investigated, and potentially manipulated, in a more naturalistic manner. -
Seijdel, N., Sakmakidis, N., De Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2019). Implicit scene segmentation in deeper convolutional neural networks. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 1059-1062). doi:10.32470/CCN.2019.1149-0.
Abstract
Feedforward deep convolutional neural networks (DCNNs) are matching and even surpassing human performance on object recognition. This performance suggests that activation of a loose collection of image
features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Recent findings in humans however, suggest that while feedforward activity may suffice for
sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to
performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects
and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicated less distinction between object- and background features for more shallow networks. For those networks, we observed a benefit of training on segmented objects (as compared to unsegmented objects). Overall, deeper networks trained on natural
(unsegmented) scenes seem to perform implicit 'segmentation' of the objects from their background, possibly by improved selection of relevant features. -
Smits, A., Seijdel, N., Scholte, H., Heywood, C., Kentridge, R., & de Haan, E. (2019). Action blindsight and antipointing in a hemianopic patient. Neuropsychologia, 128, 270-275. doi:10.1016/j.neuropsychologia.2018.03.029.
Abstract
Blindsight refers to the observation of residual visual abilities in the hemianopic field of patients without a functional V1. Given the within- and between-subject variability in the preserved abilities and the phenomenal experience of blindsight patients, the fine-grained description of the phenomenon is still debated. Here we tested a patient with established “perceptual” and “attentional” blindsight (c.f. Danckert and Rossetti, 2005). Using a pointing paradigm patient MS, who suffers from a complete left homonymous hemianopia, showed clear above chance manual localisation of ‘unseen’ targets. In addition, target presentations in his blind field led MS, on occasion, to spontaneous responses towards his sighted field. Structural and functional magnetic resonance imaging was conducted to evaluate the magnitude of V1 damage. Results revealed the presence of a calcarine sulcus in both hemispheres, yet his right V1 is reduced, structurally disconnected and shows no fMRI response to visual stimuli. Thus, visual stimulation of his blind field can lead to “action blindsight” and spontaneous antipointing, in absence of a functional right V1. With respect to the antipointing, we suggest that MS may have registered the stimulation and subsequently presumes it must have been in his intact half field.Additional information
video
Share this page