Publications

Displaying 1 - 45 of 45
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Ergin, R., Senghas, A., Jackendoff, R., & Gleitman, L. (2018). Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 104-106). Toruń, Poland: NCU Press. doi:10.12775/3991-1.025.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Rommers, J., & Federmeier, K. D. (2018). Electrophysiological methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 247-265). Hoboken: Wiley.
  • Udden, J., & Männel, C. (2018). Artificial grammar learning and its neurobiology in relation to language processing and development. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 755-783). Oxford: Oxford University Press.

    Abstract

    The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Bosker, H. R., & Kösem, A. (2017). An entrained rhythm's frequency, not phase, influences temporal sampling of speech. In Proceedings of Interspeech 2017 (pp. 2416-2420). doi:10.21437/Interspeech.2017-73.

    Abstract

    Brain oscillations have been shown to track the slow amplitude fluctuations in speech during comprehension. Moreover, there is evidence that these stimulus-induced cortical rhythms may persist even after the driving stimulus has ceased. However, how exactly this neural entrainment shapes speech perception remains debated. This behavioral study investigated whether and how the frequency and phase of an entrained rhythm would influence the temporal sampling of subsequent speech. In two behavioral experiments, participants were presented with slow and fast isochronous tone sequences, followed by Dutch target words ambiguous between as /ɑs/ “ash” (with a short vowel) and aas /a:s/ “bait” (with a long vowel). Target words were presented at various phases of the entrained rhythm. Both experiments revealed effects of the frequency of the tone sequence on target word perception: fast sequences biased listeners to more long /a:s/ responses. However, no evidence for phase effects could be discerned. These findings show that an entrained rhythm’s frequency, but not phase, influences the temporal sampling of subsequent speech. These outcomes are compatible with theories suggesting that sensory timing is evaluated relative to entrained frequency. Furthermore, they suggest that phase tracking of (syllabic) rhythms by theta oscillations plays a limited role in speech parsing.
  • Franken, M. K., Eisner, F., Schoffelen, J.-M., Acheson, D. J., Hagoort, P., & McQueen, J. M. (2017). Audiovisual recalibration of vowel categories. In Proceedings of Interspeech 2017 (pp. 655-658). doi:10.21437/Interspeech.2017-122.

    Abstract

    One of the most daunting tasks of a listener is to map a
    continuous auditory stream onto known speech sound
    categories and lexical items. A major issue with this mapping
    problem is the variability in the acoustic realizations of sound
    categories, both within and across speakers. Past research has
    suggested listeners may use visual information (e.g., lipreading)
    to calibrate these speech categories to the current
    speaker. Previous studies have focused on audiovisual
    recalibration of consonant categories. The present study
    explores whether vowel categorization, which is known to show
    less sharply defined category boundaries, also benefit from
    visual cues.
    Participants were exposed to videos of a speaker
    pronouncing one out of two vowels, paired with audio that was
    ambiguous between the two vowels. After exposure, it was
    found that participants had recalibrated their vowel categories.
    In addition, individual variability in audiovisual recalibration is
    discussed. It is suggested that listeners’ category sharpness may
    be related to the weight they assign to visual information in
    audiovisual speech perception. Specifically, listeners with less
    sharp categories assign more weight to visual information
    during audiovisual speech recognition.
  • Hagoort, P. (2017). It is the facts, stupid. In J. Brockman, F. Van der Wa, & H. Corver (Eds.), Wetenschappelijke parels: het belangrijkste wetenschappelijke nieuws volgens 193 'briljante geesten'. Amsterdam: Maven Press.
  • Hagoort, P. (2017). The neural basis for primary and acquired language skills. In E. Segers, & P. Van den Broek (Eds.), Developmental Perspectives in Written Language and Literacy: In honor of Ludo Verhoeven (pp. 17-28). Amsterdam: Benjamins. doi:10.1075/z.206.02hag.

    Abstract

    Reading is a cultural invention that needs to recruit cortical infrastructure that was not designed for it (cultural recycling of cortical maps). In the case of reading both visual cortex and networks for speech processing are recruited. Here I discuss current views on the neurobiological underpinnings of spoken language that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca’s and Wernicke’s region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. The consequences of this architecture for reading are discussed.
  • Gerwien, J., & Flecken, M. (2016). First things first? Top-down influences on event apprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2633-2638). Austin, TX: Cognitive Science Society.

    Abstract

    Not much is known about event apprehension, the earliest stage of information processing in elicited language production studies, using pictorial stimuli. A reason for our lack of knowledge on this process is that apprehension happens very rapidly (<350 ms after stimulus onset, Griffin & Bock 2000), making it difficult to measure the process directly. To broaden our understanding of apprehension, we analyzed landing positions and onset latencies of first fixations on visual stimuli (pictures of real-world events) given short stimulus presentation times, presupposing that the first fixation directly results from information processing during apprehension
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). Synthesized Size-Sound Sound Symbolism. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1823-1828). Austin, TX: Cognitive Science Society.

    Abstract

    Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from natural languages and has proposed a role for shared cross-modal correspondences in biasing form-to-meaning associations. An important open question is how the associations work, and particularly what the role is of sound-symbolic matches versus mismatches. We report on a learning task designed to distinguish between three existing theories by using a spectrum of sound-symbolically matching, mismatching, and neutral (neither matching nor mismatching) stimuli. Synthesized stimuli allow us to control for prosody, and the inclusion of a neutral condition allows a direct test of competing accounts. We find evidence for a sound-symbolic match boost, but not for a mismatch difficulty compared to the neutral condition.
  • De Nooijer, J. A., & Willems, R. M. (2016). What can we learn about cognition from studying handedness? Insights from cognitive neuroscience. In F. Loffing, N. Hagemann, B. Strauss, & C. MacMahon (Eds.), Laterality in sports: Theories and applications (pp. 135-153). Amsterdam: Elsevier.

    Abstract

    Can studying left- and right-handers inform us about cognition? In this chapter, we give an overview of research showing that studying left- and right-handers is informative for understanding the way the brain is organized (i.e., lateralized), as there appear to be differences between left- and right-handers in this respect, but also on the behavioral level handedness studies can provide new insights. According to theories of embodied cognition, our body can influence cognition. Given that left- and right-handers use their bodies differently, this might reflect their performance on an array of cognitive tasks. Indeed, handedness can have an influence on, for instance, what side of space we judge as more positive, the way we gesture, how we remember things, and how we learn new words. Laterality research can, therefore, provide valuable information as to how we act and why
  • Peeters, D. (2016). Processing consequences of onomatopoeic iconicity in spoken language comprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1632-1647). Austin, TX: Cognitive Science Society.

    Abstract

    Iconicity is a fundamental feature of human language. However its processing consequences at the behavioral and neural level in spoken word comprehension are not well understood. The current paper presents the behavioral and electrophysiological outcome of an auditory lexical decision task in which native speakers of Dutch listened to onomatopoeic words and matched control words while their electroencephalogram was recorded. Behaviorally, onomatopoeic words were processed as quickly and accurately as words with an arbitrary mapping between form and meaning. Event-related potentials time-locked to word onset revealed a significant decrease in negative amplitude in the N2 and N400 components and a late positivity for onomatopoeic words in comparison to the control words. These findings advance our understanding of the temporal dynamics of iconic form-meaning mapping in spoken word comprehension and suggest interplay between the neural representations of real-world sounds and spoken words.
  • Silva, S., Petersson, K. M., & Castro, S. (2016). Rhythm in the brain: Is music special? In D. Da Silva Marques, & J. Avila-Toscano (Eds.), Neuroscience to neuropsychology: The study of the human brain (pp. 29-54). Barranquilla, Colombia: Ediciones CUR.
  • Bottini, R., & Casasanto, D. (2010). Implicit spatial length modulates time estimates, but not vice versa. In C. Hölscher, T. F. Shipley, M. Olivetti Belardinelli, J. A. Bateman, & N. Newcombe (Eds.), Spatial Cognition VII. International Conference, Spatial Cognition 2010, Mt. Hood/Portland, OR, USA, August 15-19, 2010. Proceedings (pp. 152-162). Berlin Heidelberg: Springer.

    Abstract

    How are space and time represented in the human mind? Here we evaluate two theoretical proposals, one suggesting a symmetric relationship between space and time (ATOM theory) and the other an asymmetric relationship (metaphor theory). In Experiment 1, Dutch-speakers saw 7-letter nouns that named concrete objects of various spatial lengths (tr. pencil, bench, footpath) and estimated how much time they remained on the screen. In Experiment 2, participants saw nouns naming temporal events of various durations (tr. blink, party, season) and estimated the words’ spatial length. Nouns that named short objects were judged to remain on the screen for a shorter time, and nouns that named longer objects to remain for a longer time. By contrast, variations in the duration of the event nouns’ referents had no effect on judgments of the words’ spatial length. This asymmetric pattern of cross-dimensional interference supports metaphor theory and challenges ATOM.
  • Bottini, R., & Casasanto, D. (2010). Implicit spatial length modulates time estimates, but not vice versa. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 1348-1353). Austin, TX: Cognitive Science Society.

    Abstract

    Why do people accommodate to each other’s linguistic behavior? Studies of natural interactions (Giles, Taylor & Bourhis, 1973) suggest that speakers accommodate to achieve interactional goals, influencing what their interlocutor thinks or feels about them. But is this the only reason speakers accommodate? In real-world conversations, interactional motivations are ubiquitous, making it difficult to assess the extent to which they drive accommodation. Do speakers still accommodate even when interactional goals cannot be achieved, for instance, when their interlocutor cannot interpret their accommodation behavior? To find out, we asked participants to enter an immersive virtual reality (VR) environment and to converse with a virtual interlocutor. Participants accommodated to the speech rate of their virtual interlocutor even though he could not interpret their linguistic behavior, and thus accommodation could not possibly help them to achieve interactional goals. Results show that accommodation does not require explicit interactional goals, and suggest other social motivations for accommodation.
  • Brookshire, G., Casasanto, D., & Ivry, R. (2010). Modulation of motor-meaning congruity effects for valenced words. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (CogSci 2010) (pp. 1940-1945). Austin, TX: Cognitive Science Society.

    Abstract

    We investigated the extent to which emotionally valenced words automatically cue spatio-motor representations. Participants made speeded button presses, moving their hand upward or downward while viewing words with positive or negative valence. Only the color of the words was relevant to the response; on target trials, there was no requirement to read the words or process their meaning. In Experiment 1, upward responses were faster for positive words, and downward for negative words. This effect was extinguished, however, when words were repeated. In Experiment 2, participants performed the same primary task with the addition of distractor trials. Distractors either oriented attention toward the words’ meaning or toward their color. Congruity effects were increased with orientation to meaning, but eliminated with orientation to color. When people read words with emotional valence, vertical spatio-motor representations are activated highly automatically, but this automaticity is modulated by repetition and by attentional orientation to the words’ form or meaning.
  • Brouwer, H., Fitz, H., & Hoeks, J. C. (2010). Modeling the noun phrase versus sentence coordination ambiguity in Dutch: Evidence from Surprisal Theory. In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010 (pp. 72-80). Association for Computational Linguistics.

    Abstract

    This paper investigates whether surprisal theory can account for differential processing difficulty in the NP-/S-coordination ambiguity in Dutch. Surprisal is estimated using a Probabilistic Context-Free Grammar (PCFG), which is induced from an automatically annotated corpus. We find that our lexicalized surprisal model can account for the reading time data from a classic experiment on this ambiguity by Frazier (1987). We argue that syntactic and lexical probabilities, as specified in a PCFG, are sufficient to account for what is commonly referred to as an NP-coordination preference.
  • Casasanto, D., & Bottini, R. (2010). Can mirror-reading reverse the flow of time? In C. Hölscher, T. F. Shipley, M. Olivetti Belardinelli, J. A. Bateman, & N. S. Newcombe (Eds.), Spatial Cognition VII. International Conference, Spatial Cognition 2010, Mt. Hood/Portland, OR, USA, August 15-19, 2010. Proceedings (pp. 335-345). Berlin Heidelberg: Springer.

    Abstract

    Across cultures, people conceptualize time as if it flows along a horizontal timeline, but the direction of this implicit timeline is culture-specific: in cultures with left-to-right orthography (e.g., English-speaking cultures) time appears to flow rightward, but in cultures with right-to-left orthography (e.g., Arabic-speaking cultures) time flows leftward. Can orthography influence implicit time representations independent of other cultural and linguistic factors? Native Dutch speakers performed a space-time congruity task with the instructions and stimuli written in either standard Dutch or mirror-reversed Dutch. Participants in the Standard Dutch condition were fastest to judge past-oriented phrases by pressing the left button and future-oriented phrases by pressing the right button. Participants in the Mirror-Reversed Dutch condition showed the opposite pattern of reaction times, consistent with results found previously in native Arabic and Hebrew speakers. These results demonstrate a causal role for writing direction in shaping implicit mental representations of time.
  • Casasanto, D., & Bottini, R. (2010). Can mirror-reading reverse the flow of time? In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (CogSci 2010) (pp. 1342-1347). Austin, TX: Cognitive Science Society.

    Abstract

    Across cultures, people conceptualize time as if it flows along a horizontal timeline, but the direction of this implicit timeline is culture-specific: in cultures with left-to-right orthography (e.g., English-speaking cultures) time appears to flow rightward, but in cultures with right-to-left orthography (e.g., Arabic-speaking cultures) time flows leftward. Can orthography influence implicit time representations independent of other cultural and linguistic factors? Native Dutch speakers performed a space-time congruity task with the instructions and stimuli written in either standard Dutch or mirror-reversed Dutch. Participants in the Standard Dutch condition were fastest to judge past-oriented phrases by pressing the left button and future-oriented phrases by pressing the right button. Participants in the Mirror-Reversed Dutch condition showed the opposite pattern of reaction times, consistent with results found previously in native Arabic and Hebrew speakers. These results demonstrate a causal role for writing direction in shaping implicit mental representations of time.
  • Casasanto, D. (2010). En qué casos una metáfora lingüística constituye una metáfora conceptual? In D. Pérez, S. Español, L. Skidelsky, & R. Minervino (Eds.), Conceptos: Debates contemporáneos en filosofía y psicología. Buenos Airos: Catálogos.
  • Casasanto, D., & Bottini, R. (2010). Mirror-reading can reverse the flow of time [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 57). York: University of York.
  • Casasanto, D., & Jasmin, K. (2010). Good and bad in the hands of politicians: Spontaneous gestures during positive and negative speech [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 137). York: University of York.
  • Casasanto, D. (2010). Wie der Körper Sprache und Vorstellungsvermögen im Gehirn formt. In Max-Planck-Gesellschaft. Jahrbuch 2010. München: Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/jahrbuch/forschungsbericht?obj=454607.

    Abstract

    Wenn unsere geistigen Fähigkeiten zum Teil von der Struktur unserer Körper abhängen, dann sollten Menschen mit unterschiedlichen Körpertypen unterschiedlich denken. Um dies zu überprüfen, haben Wissenschaftler des MPI für Psycholinguistik neurale Korrelate von Sprachverstehen und motorischen Vorstellungen untersucht, die durch Aktionsverben hervorgerufen werden. Diese Verben bezeichnen Handlungen, die Menschen zumeist mit ihrer dominanten Hand ausführen (z. B. schreiben, werfen). Das Verstehen dieser Verben sowie die Vorstellung entsprechender motorischer Handlungen wurde in Gehirnen von Rechts- und Linkshändern unterschiedlich lateralisiert. Bilden Menschen mit unterschiedlichen Körpertypen verschiedene Konzepte und Wortbedeutungen? Gemäß der Körperspezifitätshypothese sollten sie das tun [1]. Weil geistige Fähigkeiten vom Körper abhängen, sollten Menschen mit unterschiedlichen Körpertypen auch unterschiedlich denken. Diese Annahme stellt die klassische Auffassung in Frage, dass Konzepte universal und Wortbedeutungen identisch sind für alle Sprecher einer Sprache. Untersuchungen im Projekt „Sprache in Aktion“ am MPI für Psycholinguistik zeigen, dass die Art und Weise, wie Sprecher ihre Körper nutzen, die Art und Weise beeinflusst, wie sie sich im Gehirn Handlungen vorstellen und wie sie Sprache, die solche Handlungen thematisiert, im Gehirn verarbeiten.
  • Dediu, D. (2010). Linguistic and genetic diversity - how and why are they related? In M. Brüne, F. Salter, & W. McGrew (Eds.), Building bridges between anthropology, medicine and human ethology: Tributes to Wulf Schiefenhövel (pp. 169-178). Bochum: Europäischer Universitätsverlag.

    Abstract

    There are some 6000 languages spoken today, classfied in approximately 90 linguistic families and many isolates, and also differing across structural, typological, dimensions. Genetically, the human species is remarkably homogeneous, with the existant genetic diversity mostly explain by intra-population differences between individuals, but the remaining inter-population differences have a non-trivial structure. Populations splits and contacts influence both languages and genes, in principle allowing them to evolve in parallel ways. The farming/language co-dispersal hypothesis is a well-known such theory, whereby farmers spreading agriculture from its places of origin also spread their genes and languages. A different type of relationship was recently proposed, involving a genetic bias which influences the structural properties of language as it is transmitted across generations. Such a bias was proposed to explain the correlations between the distribution of tone languages and two brain development-related human genes and, if confirmed by experimental studies, it could represent a new factor explaining the distrbution of diversity. The present chapter overviews these related topics in the hope that a truly interdisciplinary approach could allow a better understanding of our complex (recent as well as evolutionary) history.
  • Dolscheid, S., Shayan, S., Ozturk, O., Majid, A., & Casasanto, D. (2010). Language shapes mental representations of musical pitch: Implications for metaphorical language processing [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 137). York: University of York.

    Abstract

    Speakers often use spatial metaphors to talk about musical pitch (e.g., a low note, a high soprano). Previous experiments suggest that English speakers also think about pitches as high or low in space, even when theyʼre not using language or musical notation (Casasanto, 2010). Do metaphors in language merely reflect pre-existing associations between space and pitch, or might language also shape these non-linguistic metaphorical mappings? To investigate the role of language in pitch tepresentation, we conducted a pair of non-linguistic spacepitch interference experiments in speakers of two languages that use different spatial metaphors. Dutch speakers usually describe pitches as ʻhighʼ (hoog) and ʻlowʼ (laag). Farsi speakers, however, often describe high-frequency pitches as ʻthinʼ (naazok) and low-frequency pitches as ʻthickʼ (koloft). Do Dutch and Farsi speakers mentally represent pitch differently? To find out, we asked participants to reproduce musical pitches that they heard in the presence of irrelevant spatial information (i.e., lines that varied either in height or in thickness). For the Height Interference experiment, horizontal lines bisected a vertical reference line at one of nine different locations. For the Thickness Interference experiment, a vertical line appeared in the middle of the screen in one of nine thicknesses. In each experiment, the nine different lines were crossed with nine different pitches ranging from C4 to G#4 in semitone increments, to produce 81 distinct trials. If Dutch and Farsi speakers mentally represent pitch the way they talk about it, using different kinds of spatial representations, they should show contrasting patterns of cross-dimensional interference: Dutch speakersʼ pitch estimates should be more strongly affected by irrelevant height information, and Farsi speakersʼ by irrelevant thickness information. As predicted, Dutch speakersʼ pitch estimates were significantly modulated by spatial height but not by thickness. Conversely, Farsi speakersʼ pitch estimates were modulated by spatial thickness but not by height (2x2 ANOVA on normalized slopes of the effect of space on pitch: F(1,71)=17,15 p<.001). To determine whether language plays a causal role in shaping pitch representations, we conducted a training experiment. Native Dutch speakers learned to use Farsi-like metaphors, describing pitch relationships in terms of thickness (e.g., a cello sounds ʻthickerʼ than a flute). After training, Dutch speakers showed a significant effect of Thickness interference in the non-linguistic pitch reproduction task, similar to native Farsi speakers: on average, pitches accompanied by thicker lines were reproduced as lower in pitch (effect of thickness on pitch: r=-.22, p=.002). By conducting psychophysical tasks, we tested the ʻWhorfianʼ question without using words. Yet, results also inform theories of metaphorical language processing. According to psycholinguistic theories (e.g., Bowdle & Gentner, 2005), highly conventional metaphors are processed without any active mapping from the source to the target domain (e.g., from space to pitch). Our data, however, suggest that when people use verbal metaphors they activate a corresponding non-linguistic mapping from either height or thickness to pitch, strengthening this association at the expense of competing associations. As a result, people who use different metaphors in their native languages form correspondingly different representations of musical pitch. Casasanto, D. (2010). Space for Thinking. In Language, Cognition and Space: State of the art and new directions. V. Evans & P. Chilton (Eds.), 453-478, London: Equinox Publishing. Bowdle, B. & Gentner, D. (2005). The career of metaphor. Psychological Review, 112, 193-216.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 188-220). Malden, MA: Wiley-Blackwell.
  • Furman, R., Ozyurek, A., & Küntay, A. C. (2010). Early language-specificity in Turkish children's caused motion event expressions in speech and gesture. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Boston University Conference on Language Development. Volume 1 (pp. 126-137). Somerville, MA: Cascadilla Press.
  • Jasmin, K., & Casasanto, D. (2010). Stereotyping: How the QWERTY keyboard shapes the mental lexicon [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 159). York: University of York.
  • Junge, C., Hagoort, P., Kooijman, V., & Cutler, A. (2010). Brain potentials for word segmentation at seven months predict later language development. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Annual Boston University Conference on Language Development. Volume 1 (pp. 209-220). Somerville, MA: Cascadilla Press.
  • Junge, C., Cutler, A., & Hagoort, P. (2010). Ability to segment words from speech as a precursor of later language development: Insights from electrophysiological responses in the infant brain. In M. Burgess, J. Davey, C. Don, & T. McMinn (Eds.), Proceedings of 20th International Congress on Acoustics, ICA 2010. Incorporating Proceedings of the 2010 annual conference of the Australian Acoustical Society (pp. 3727-3732). Australian Acoustical Society, NSW Division.
  • Kita, S., Ozyurek, A., Allen, S., & Ishizuka, T. (2010). Early links between iconic gestures and sound symbolic words: Evidence for multimodal protolanguage. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 429-430). Singapore: World Scientific.
  • Ozyurek, A. (2010). The role of iconic gestures in production and comprehension of language: Evidence from brain and behavior. In S. Kopp, & I. Wachsmuth (Eds.), Gesture in embodied communication and human-computer interaction: 8th International Gesture Workshop, GW 2009, Bielefeld, Germany, February 25-27 2009. Revised selected papers (pp. 1-10). Berlin: Springer.
  • Reis, A., Petersson, K. M., & Faísca, L. (2010). Neuroplasticidade: Os efeitos de aprendizagens específicas no cérebro humano. In C. Nunes, & S. N. Jesus (Eds.), Temas actuais em Psicologia (pp. 11-26). Faro: Universidade do Algarve.
  • Reis, A., Faísca, L., Castro, S.-L., & Petersson, K. M. (2010). Preditores da leitura ao longo da escolaridade: Um estudo com alunos do 1 ciclo do ensino básico. In Actas do VII simpósio nacional de investigação em psicologia (pp. 3117-3132).

    Abstract

    A aquisição da leitura decorre ao longo de diversas etapas, desde o momento em que a criança inicia o contacto com o alfabeto até ao momento em que se torna um leitor competente, apto a ler correcta e fluentemente. Compreender a evolução desta competência através de uma análise da diferenciação do peso de variáveis preditoras da leitura possibilita teorizar sobre os mecanismos cognitivos envolvidos nas diferentes fases de desenvolvimento da leitura. Realizámos um estudo transversal com 568 alunos do segundo ao quarto ano do primeiro ciclo do Ensino Básico, em que se avaliou o impacto de capacidades de processamento fonológico, nomeação rápida, conhecimento letra-som e vocabulário, bem como de capacidades cognitivas mais gerais (inteligência não-verbal e memória de trabalho), na exactidão e velocidade da leitura. De uma forma geral, os resultados mostraram que, apesar da consciência fonológica permanecer como o preditor mais importante da exactidão e fluência da leitura, o seu peso decresce à medida que a escolaridade aumenta. Observou-se também que, à medida que o contributo da consciência fonológica para a explicação da velocidade de leitura diminuía, aumentava o contributo de outras variáveis mais associadas ao automatismo e reconhecimento lexical, tais como a nomeação rápida e o vocabulário. Em suma, podemos dizer que ao longo da escolaridade se observa uma alteração dinâmica dos processos cognitivos subjacentes à leitura, o que sugere que a criança evolui de uma estratégia de leitura ancorada em processamentos sub-lexicais, e como tal mais dependente de processamentos fonológicos, para uma estratégia baseada no reconhecimento ortográfico das palavras.
  • Senghas, A., Ozyurek, A., & Goldin-Meadow, S. (2010). The evolution of segmentation and sequencing: Evidence from homesign and Nicaraguan Sign Language. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 279-289). Singapore: World Scientific.
  • Staum Casasanto, L., Jasmin, K., & Casasanto, D. (2010). Virtually accommodating: Speech rate accommodation to a virtual interlocutor. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 127-132). Austin, TX: Cognitive Science Society.

    Abstract

    Why do people accommodate to each other’s linguistic behavior? Studies of natural interactions (Giles, Taylor & Bourhis, 1973) suggest that speakers accommodate to achieve interactional goals, influencing what their interlocutor thinks or feels about them. But is this the only reason speakers accommodate? In real-world conversations, interactional motivations are ubiquitous, making it difficult to assess the extent to which they drive accommodation. Do speakers still accommodate even when interactional goals cannot be achieved, for instance, when their interlocutor cannot interpret their accommodation behavior? To find out, we asked participants to enter an immersive virtual reality (VR) environment and to converse with a virtual interlocutor. Participants accommodated to the speech rate of their virtual interlocutor even though he could not interpret their linguistic behavior, and thus accommodation could not possibly help them to achieve interactional goals. Results show that accommodation does not require explicit interactional goals, and suggest other social motivations for accommodation.
  • Van Rees Vellinga, M., Hanulikova, A., Weber, A., & Zwitserlood, P. (2010). A neurophysiological investigation of processing phoneme substitutions in L2. In New Sounds 2010: Sixth International Symposium on the Acquisition of Second Language Speech (pp. 518-523). Poznan, Poland: Adam Mickiewicz University.
  • Willems, R. M., Labruna, L., D'Esposito, M., Ivry, R., & Casasanto, D. (2010). A functional role for the motor system in language understanding: Evidence from rTMS [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 127). York: University of York.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.

Share this page