Publications

Displaying 1 - 17 of 17
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Ergin, R., Senghas, A., Jackendoff, R., & Gleitman, L. (2018). Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 104-106). Toruń, Poland: NCU Press. doi:10.12775/3991-1.025.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • De Groot, A. M. B., & Hagoort, P. (Eds.). (2018). Research methods in psycholinguistics and the neurobiology of language: A practical guide. Oxford: Wiley.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Rommers, J., & Federmeier, K. D. (2018). Electrophysiological methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 247-265). Hoboken: Wiley.
  • Udden, J., & Männel, C. (2018). Artificial grammar learning and its neurobiology in relation to language processing and development. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 755-783). Oxford: Oxford University Press.

    Abstract

    The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Coulson, S., & Lai, V. T. (Eds.). (2016). The metaphorical brain [Research topic]. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-772-9.

    Abstract

    This Frontiers Special Issue will synthesize current findings on the cognitive neuroscience of metaphor, provide a forum for voicing novel perspectives, and promote new insights into the metaphorical brain.
  • Gerwien, J., & Flecken, M. (2016). First things first? Top-down influences on event apprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2633-2638). Austin, TX: Cognitive Science Society.

    Abstract

    Not much is known about event apprehension, the earliest stage of information processing in elicited language production studies, using pictorial stimuli. A reason for our lack of knowledge on this process is that apprehension happens very rapidly (<350 ms after stimulus onset, Griffin & Bock 2000), making it difficult to measure the process directly. To broaden our understanding of apprehension, we analyzed landing positions and onset latencies of first fixations on visual stimuli (pictures of real-world events) given short stimulus presentation times, presupposing that the first fixation directly results from information processing during apprehension
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). Synthesized Size-Sound Sound Symbolism. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1823-1828). Austin, TX: Cognitive Science Society.

    Abstract

    Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from natural languages and has proposed a role for shared cross-modal correspondences in biasing form-to-meaning associations. An important open question is how the associations work, and particularly what the role is of sound-symbolic matches versus mismatches. We report on a learning task designed to distinguish between three existing theories by using a spectrum of sound-symbolically matching, mismatching, and neutral (neither matching nor mismatching) stimuli. Synthesized stimuli allow us to control for prosody, and the inclusion of a neutral condition allows a direct test of competing accounts. We find evidence for a sound-symbolic match boost, but not for a mismatch difficulty compared to the neutral condition.
  • De Nooijer, J. A., & Willems, R. M. (2016). What can we learn about cognition from studying handedness? Insights from cognitive neuroscience. In F. Loffing, N. Hagemann, B. Strauss, & C. MacMahon (Eds.), Laterality in sports: Theories and applications (pp. 135-153). Amsterdam: Elsevier.

    Abstract

    Can studying left- and right-handers inform us about cognition? In this chapter, we give an overview of research showing that studying left- and right-handers is informative for understanding the way the brain is organized (i.e., lateralized), as there appear to be differences between left- and right-handers in this respect, but also on the behavioral level handedness studies can provide new insights. According to theories of embodied cognition, our body can influence cognition. Given that left- and right-handers use their bodies differently, this might reflect their performance on an array of cognitive tasks. Indeed, handedness can have an influence on, for instance, what side of space we judge as more positive, the way we gesture, how we remember things, and how we learn new words. Laterality research can, therefore, provide valuable information as to how we act and why
  • Peeters, D. (2016). Processing consequences of onomatopoeic iconicity in spoken language comprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1632-1647). Austin, TX: Cognitive Science Society.

    Abstract

    Iconicity is a fundamental feature of human language. However its processing consequences at the behavioral and neural level in spoken word comprehension are not well understood. The current paper presents the behavioral and electrophysiological outcome of an auditory lexical decision task in which native speakers of Dutch listened to onomatopoeic words and matched control words while their electroencephalogram was recorded. Behaviorally, onomatopoeic words were processed as quickly and accurately as words with an arbitrary mapping between form and meaning. Event-related potentials time-locked to word onset revealed a significant decrease in negative amplitude in the N2 and N400 components and a late positivity for onomatopoeic words in comparison to the control words. These findings advance our understanding of the temporal dynamics of iconic form-meaning mapping in spoken word comprehension and suggest interplay between the neural representations of real-world sounds and spoken words.
  • Silva, S., Petersson, K. M., & Castro, S. (2016). Rhythm in the brain: Is music special? In D. Da Silva Marques, & J. Avila-Toscano (Eds.), Neuroscience to neuropsychology: The study of the human brain (pp. 29-54). Barranquilla, Colombia: Ediciones CUR.

Share this page