Publications

Displaying 101 - 150 of 150
  • Holler, J., Kelly, S., Hagoort, P., & Ozyurek, A. (2012). When gestures catch the eye: The influence of gaze direction on co-speech gesture comprehension in triadic communication. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 467-472). Austin, TX: Cognitive Society. Retrieved from http://mindmodeling.org/cogsci2012/papers/0092/index.html.

    Abstract

    Co-speech gestures are an integral part of human face-to-face communication, but little is known about how pragmatic factors influence our comprehension of those gestures. The present study investigates how different types of recipients process iconic gestures in a triadic communicative situation. Participants (N = 32) took on the role of one of two recipients in a triad and were presented with 160 video clips of an actor speaking, or speaking and gesturing. Crucially, the actor’s eye gaze was manipulated in that she alternated her gaze between the two recipients. Participants thus perceived some messages in the role of addressed recipient and some in the role of unaddressed recipient. In these roles, participants were asked to make judgements concerning the speaker’s messages. Their reaction times showed that unaddressed recipients did comprehend speaker’s gestures differently to addressees. The findings are discussed with respect to automatic and controlled processes involved in gesture comprehension.
  • Jasmin, K., & Casasanto, D. (2012). The QWERTY Effect: How typing shapes the meanings of words. Psychonomic Bulletin & Review, 19, 499-504. doi:10.3758/s13423-012-0229-7.

    Abstract

    The QWERTY keyboard mediates communication for millions of language users. Here, we investigated whether differences in the way words are typed correspond to differences in their meanings. Some words are spelled with more letters on the right side of the keyboard and others with more letters on the left. In three experiments, we tested whether asymmetries in the way people interact with keys on the right and left of the keyboard influence their evaluations of the emotional valence of the words. We found the predicted relationship between emotional valence and QWERTY key position across three languages (English, Spanish, and Dutch). Words with more right-side letters were rated as more positive in valence, on average, than words with more left-side letters: the QWERTY effect. This effect was strongest in new words coined after QWERTY was invented and was also found in pseudowords. Although these data are correlational, the discovery of a similar pattern across languages, which was strongest in neologisms, suggests that the QWERTY keyboard is shaping the meanings of words as people filter language through their fingers. Widespread typing introduces a new mechanism by which semanntic changes in language can arise.
  • Junge, C., Cutler, A., & Hagoort, P. (2012). Electrophysiological evidence of early word learning. Neuropsychologia, 50, 3702-3712. doi:10.1016/j.neuropsychologia.2012.10.012.

    Abstract

    Around their first birthday infants begin to talk, yet they comprehend words long before. This study investigated the event-related potentials (ERP) responses of nine-month-olds on basic level picture-word pairings. After a familiarization phase of six picture-word pairings per semantic category, comprehension for novel exemplars was tested in a picture-word matching paradigm. ERPs time-locked to pictures elicited a modulation of the Negative Central (Nc) component, associated with visual attention and recognition. It was attenuated by category repetition as well as by the type-token ratio of picture context. ERPs time-locked to words in the training phase became more negative with repetition (N300-600), but there was no influence of picture type-token ratio, suggesting that infants have identified the concept of each picture before a word was presented. Results from the test phase provided clear support that infants integrated word meanings with (novel) picture context. Here, infants showed different ERP responses for words that did or did not align with the picture context: a phonological mismatch (N200) and a semantic mismatch (N400). Together, results were informative of visual categorization, word recognition and word-to-world-mappings, all three crucial processes for vocabulary construction.
  • Junge, C., Kooijman, V., Hagoort, P., & Cutler, A. (2012). Rapid recognition at 10 months as a predictor of language development. Developmental Science, 15, 463-473. doi:10.1111/j.1467-7687.2012.1144.x.

    Abstract

    Infants’ ability to recognize words in continuous speech is vital for building a vocabulary.We here examined the amount and type
    of exposure needed for 10-month-olds to recognize words. Infants first heard a word, either embedded within an utterance or in
    isolation, then recognition was assessed by comparing event-related potentials to this word versus a word that they had not heard
    directly before. Although all 10-month-olds showed recognition responses to words first heard in isolation, not all infants showed
    such responses to words they had first heard within an utterance. Those that did succeed in the latter, harder, task, however,
    understood more words and utterances when re-tested at 12 months, and understood more words and produced more words at
    24 months, compared with those who had shown no such recognition response at 10 months. The ability to rapidly recognize the
    words in continuous utterances is clearly linked to future language development.
  • Kelly, S., Healey, M., Ozyurek, A., & Holler, J. (2012). The communicative influence of gesture and action during speech comprehension: Gestures have the upper hand [Abstract]. Abstracts of the Acoustics 2012 Hong Kong conference published in The Journal of the Acoustical Society of America, 131, 3311. doi:10.1121/1.4708385.

    Abstract

    Hand gestures combine with speech to form a single integrated system of meaning during language comprehension (Kelly et al., 2010). However, it is unknown whether gesture is uniquely integrated with speech or is processed like any other manual action. Thirty-one participants watched videos presenting speech with gestures or manual actions on objects. The relationship between the speech and gesture/action was either complementary (e.g., “He found the answer,” while producing a calculating gesture vs. actually using a calculator) or incongruent (e.g., the same sentence paired with the incongruent gesture/action of stirring with a spoon). Participants watched the video (prime) and then responded to a written word (target) that was or was not spoken in the video prime (e.g., “found” or “cut”). ERPs were taken to the primes (time-locked to the spoken verb, e.g., “found”) and the written targets. For primes, there was a larger frontal N400 (semantic processing) to incongruent vs. congruent items for the gesture, but not action, condition. For targets, the P2 (phonemic processing) was smaller for target words following congruent vs. incongruent gesture, but not action, primes. These findings suggest that hand gestures are integrated with speech in a privileged fashion compared to manual actions on objects.
  • Kempen, G., Olsthoorn, N., & Sprenger, S. (2012). Grammatical workspace sharing during language production and language comprehension: Evidence from grammatical multitasking. Language and Cognitive Processes, 27, 345-380. doi:10.1080/01690965.2010.544583.

    Abstract

    Grammatical encoding and grammatical decoding (in sentence production and comprehension, respectively) are often portrayed as independent modalities of grammatical performance that only share declarative resources: lexicon and grammar. The processing resources subserving these modalities are supposed to be distinct. In particular, one assumes the existence of two workspaces where grammatical structures are assembled and temporarily maintained—one for each modality. An alternative theory holds that the two modalities share many of their processing resources and postulates a single mechanism for the online assemblage and short-term storage of grammatical structures: a shared workspace. We report two experiments with a novel “grammatical multitasking” paradigm: the participants had to read (i.e., decode) and to paraphrase (encode) sentences presented in fragments, responding to each input fragment as fast as possible with a fragment of the paraphrase. The main finding was that grammatical constraints with respect to upcoming input that emanate from decoded sentence fragments are immediately replaced by grammatical expectations emanating from the structure of the corresponding paraphrase fragments. This evidences that the two modalities have direct access to, and operate upon, the same (i.e., token-identical) grammatical structures. This is possible only if the grammatical encoding and decoding processes command the same, shared grammatical workspace. Theoretical implications for important forms of grammatical multitasking—self-monitoring, turn-taking in dialogue, speech shadowing, and simultaneous translation—are explored.
  • Kim, A., & Lai, V. T. (2012). Rapid interactions between lexical semantic and word form analysis during word recognition in context: Evidence from ERPs. Journal of Cognitive Neuroscience, 24, 1104-1112. doi:10.1162/jocn_a_00148.

    Abstract

    We used event-related potentials (ERPs) to investigate the timecourse of interactions between lexical-semantic and sub-lexical visual word-form processing during word recognition. Participants read sentence-embedded pseudowords that orthographically resembled a contextually-supported real word (e.g., “She measured the flour so she could bake a ceke …”) or did not (e.g., “She measured the flour so she could bake a tont …”) along with nonword consonant strings (e.g., “She measured the flour so she could bake a srdt …”). Pseudowords that resembled a contextually-supported real word (“ceke”) elicited an enhanced positivity at 130 msec (P130), relative to real words (e.g., “She measured the flour so she could bake a cake …”). Pseudowords that did not resemble a plausible real word (“tont”) enhanced the N170 component, as did nonword consonant strings (“srdt”). The effect pattern shows that the visual word recognition system is, perhaps counterintuitively, more rapidly sensitive to minor than to flagrant deviations from contextually-predicted inputs. The findings are consistent with rapid interactions between lexical and sub-lexical representations during word recognition, in which rapid lexical access of a contextually-supported word (CAKE) provides top-down excitation of form features (“cake”), highlighting the anomaly of an unexpected word “ceke”.
  • Kos, M., Van den Brink, D., Snijders, T. M., Rijpkema, M., Franke, B., Fernandez, G., Hagoort, P., & Whitehouse, A. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLoS One, 7(10), e46995. doi:10.1371/journal.pone.0046995.

    Abstract

    The genetic FOXP2-CNTNAP2 pathway has been shown to be involved in the language capacity. We investigated whether a common variant of CNTNAP2 (rs7794745) is relevant for syntactic and semantic processing in the general population by using a visual sentence processing paradigm while recording ERPs in 49 healthy adults. While both AA homozygotes and T-carriers showed a standard N400 effect to semantic anomalies, the response to subject-verb agreement violations differed across genotype groups. T-carriers displayed an anterior negativity preceding the P600 effect, whereas for the AA group only a P600 effect was observed. These results provide another piece of evidence that the neuronal architecture of the human faculty of language is shaped differently by effects that are genetically determined.
  • Kos, M., Van den Brink, D., & Hagoort, P. (2012). Individual variation in the late positive complex to semantic anomalies. Frontiers in Psychology, 3, 318. doi:10.3389/fpsyg.2012.00318.

    Abstract

    It is well-known that, within ERP paradigms of sentence processing, semantically anomalous words elicit N400 effects. Less clear, however, is what happens after the N400. In some cases N400 effects are followed by Late Positive Complexes (LPC), whereas in other cases such effects are lacking. We investigated several factors which could affect the LPC, such as contextual constraint, inter-individual variation and working memory. Seventy-two participants read sentences containing a semantic manipulation (Whipped cream tastes sweet/anxious and creamy). Neither contextual constraint nor working memory correlated with the LPC. Inter-individual variation played a substantial role in the elicitation of the LPC with about half of the participants showing a negative response and the other half showing an LPC. This individual variation correlated with a syntactic ERP as well as an alternative semantic manipulation. In conclusion, our results show that inter-individual variation plays a large role in the elicitation of the LPC and this may account for the diversity in LPC findings in language research.
  • Lai, V. T., Hagoort, P., & Casasanto, D. (2012). Affective primacy vs. cognitive primacy: Dissolving the debate. Frontiers in Psychology, 3, 243. doi:10.3389/fpsyg.2012.00243.

    Abstract

    When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective information has priority, and its activation can precede identification of the ontological category of a stimulus. Alternatively, according to the Cognitive Primacy Hypothesis, perceivers must know what they are looking at before they can make an affective judgment about it. We propose that neither hypothesis holds at all times. Here we show that the relative speed with which affective and non-affective information gets activated by pictures and words depends upon the contexts in which stimuli are processed. Results illustrate that the question of whether affective information has processing priority over ontological information (or vice versa) is ill posed. Rather than seeking to resolve the debate over Cognitive vs. Affective Primacy in favor of one hypothesis or the other, a more productive goal may be to determine the factors that cause affective information to have processing priority in some circumstances and ontological information in others. Our findings support a view of the mind according to which words and pictures activate different neurocognitive representations every time they are processed, the specifics of which are co-determined by the stimuli themselves and the contexts in which they occur.
  • Lehtonen, M., Hulten, A., Rodríguez-Fornells, A., Cunillera, T., Tuomainen, J., & Laine, M. (2012). Differences in word recognition between early bilinguals and monolinguals: Behavioral and ERP evidence. Neuropsychologia, 50, 1362-1371. doi:10.1016/j.neuropsychologia.2012.02.021.

    Abstract

    We investigated the behavioral and brain responses (ERPs) of bilingual word recognition to three fundamental psycholinguistic factors, frequency, morphology, and lexicality, in early bilinguals vs. monolinguals. Earlier behavioral studies have reported larger frequency effects in bilingualś nondominant vs. dominant language and in some studies also when compared to corresponding monolinguals. In ERPs, language processing differences between bilinguals vs. monolinguals have typically been found in the N400 component. In the present study, highly proficient Finnish-Swedish bilinguals who had acquired both languages during childhood were compared to Finnish monolinguals during a visual lexical decision task and simultaneous ERP recordings. Behaviorally, we found that the response latencies were overall longer in bilinguals than monolinguals, and that the effects for all three factors, frequency, morphology, and lexicality were also larger in bilinguals even though they had acquired both languages early and were highly proficient in them. In line with this, the N400 effects induced by frequency, morphology, and lexicality were larger for bilinguals than monolinguals. Furthermore, the ERP results also suggest that while most inflected Finnish words are decomposed into stem and suffix, only monolinguals have encountered high frequency inflected word forms often enough to develop full-form representations for them. Larger behavioral and neural effects in bilinguals in these factors likely reflect lower amount of exposure to words compared to monolinguals, as the language input of bilinguals is divided between two languages.
  • Mellem, M. S., Bastiaansen, M. C. M., Pilgrim, L. K., Medvedev, A. V., & Friedman, R. B. (2012). Word class and context affect alpha-band oscillatory dynamics in an older population. Frontiers in Psychology, 3, 97. doi:10.3389/fpsyg.2012.00097.

    Abstract

    Differences in the oscillatory EEG dynamics of reading open class (OC) and closed class (CC) words have previously been found (Bastiaansen et al., 2005) and are thought to reflect differences in lexical-semantic content between these word classes. In particular, the theta-band (4–7 Hz) seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underlying retrieval for the two different classes of words. Older participants (mean age 55) read words presented in either syntactically correct sentences or in a scrambled order (“scrambled sentence”) while their EEG was recorded. We performed time–frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8–12 Hz) band between 200–700 ms for the OC compared to CC words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13–18 Hz) bands between 0 and 700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indirect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha-band.
  • Menenti, L., Petersson, K. M., & Hagoort, P. (2012). From reference to sense: How the brain encodes meaning for speaking. Frontiers in Psychology, 2, 384. doi:10.3389/fpsyg.2011.00384.

    Abstract

    In speaking, semantic encoding is the conversion of a non-verbal mental representation (the reference) into a semantic structure suitable for expression (the sense). In this fMRI study on sentence production we investigate how the speaking brain accomplishes this transition from non-verbal to verbal representations. In an overt picture description task, we manipulated repetition of sense (the semantic structure of the sentence) and reference (the described situation) separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these two components of semantic encoding. We also performed a control experiment with the same stimuli and design but without any linguistic task to identify areas involved in perception of the stimuli per se. The bilateral inferior parietal lobes were selectively sensitive to repetition of reference, while left inferior frontal gyrus showed selective suppression to repetition of sense. Strikingly, a widespread network of areas associated with language processing (left middle frontal gyrus, bilateral superior parietal lobes and bilateral posterior temporal gyri) all showed repetition suppression to both sense and reference processing. These areas are probably involved in mapping reference onto sense, the crucial step in semantic encoding. These results enable us to track the transition from non-verbal to verbal representations in our brains.
  • Menenti, L., Segaert, K., & Hagoort, P. (2012). The neuronal infrastructure of speaking. Brain and Language, 122, 71-80. doi:10.1016/j.bandl.2012.04.012.

    Abstract

    Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain’s integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we manipulated repetition of sentence meaning, words, and syntax separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these processes. We demonstrate that semantic, lexical and syntactic processes are carried out in partly overlapping and partly distinct brain networks and show that the classic left-hemispheric dominance for language is present for syntax but not semantics.
  • Menenti, L., Pickering, M. J., & Garrod, S. C. (2012). Towards a neural basis of interactive alignment in conversation. Frontiers in Human Neuroscience, 6, 185. doi:10.3389/fnhum.2012.00185.

    Abstract

    The interactive-alignment account of dialogue proposes that interlocutors achieve conversational success by aligning their understanding of the situation under discussion. Such alignment occurs because they prime each other at different levels of representation (e.g., phonology, syntax, semantics), and this is possible because these representations are shared across production and comprehension. In this paper, we briefly review the behavioral evidence, and then consider how findings from cognitive neuroscience might lend support to this account, on the assumption that alignment of neural activity corresponds to alignment of mental states. We first review work supporting representational parity between production and comprehension, and suggest that neural activity associated with phonological, lexical, and syntactic aspects of production and comprehension are closely related. We next consider evidence for the neural bases of the activation and use of situation models during production and comprehension, and how these demonstrate the activation of non-linguistic conceptual representations associated with language use. We then review evidence for alignment of neural mechanisms that are specific to the act of communication. Finally, we suggest some avenues of further research that need to be explored to test crucial predictions of the interactive alignment account.
  • Ozyurek, A. (2012). Gesture. In R. Pfau, M. Steinbach, & B. Woll (Eds.), Sign language: An international handbook (pp. 626-646). Berlin: Mouton.

    Abstract

    Gestures are meaningful movements of the body, the hands, and the face during communication,
    which accompany the production of both spoken and signed utterances. Recent
    research has shown that gestures are an integral part of language and that they contribute
    semantic, syntactic, and pragmatic information to the linguistic utterance. Furthermore,
    they reveal internal representations of the language user during communication in ways
    that might not be encoded in the verbal part of the utterance. Firstly, this chapter summarizes
    research on the role of gesture in spoken languages. Subsequently, it gives an overview
    of how gestural components might manifest themselves in sign languages, that is,
    in a situation in which both gesture and sign are expressed by the same articulators.
    Current studies are discussed that address the question of whether gestural components are the same or different in the two language modalities from a semiotic as well as from a cognitive and processing viewpoint. Understanding the role of gesture in both sign and
    spoken language contributes to our knowledge of the human language faculty as a multimodal communication system.
  • Peeters, D., Vanlangendonck, F., & Willems, R. M. (2012). Bestaat er een talenknobbel? Over taal in ons brein. In M. Boogaard, & M. Jansen (Eds.), Alles wat je altijd al had willen weten over taal: De taalcanon (pp. 41-43). Amsterdam: Meulenhoff.

    Abstract

    Wanneer iemand goed is in het spreken van meerdere talen, wordt wel gezegd dat zo iemand een talenknobbel heeft. Iedereen weet dat dat niet letterlijk bedoeld is: iemand met een talenknobbel herkennen we niet aan een grote bult op zijn hoofd. Toch dacht men vroeger wel degelijk dat mensen een letterlijke talenknobbel konden ontwikkelen. Een goed ontwikkeld taalvermogen zou gepaard gaan met het groeien van het hersengebied dat hiervoor verantwoordelijk was. Dit deel van het brein zou zelfs zo groot kunnen worden dat het van binnenuit tegen de schedel drukte, met name rond de ogen. Nu weten we wel beter. Maar waar in het brein bevindt de taal zich dan wel precies?
  • Petersson, K. M., & Hagoort, P. (2012). The neurobiology of syntax: Beyond string-sets [Review article]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 1971-1883. doi:10.1098/rstb.2012.0101.

    Abstract

    The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.
  • Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120, 83-95. doi:10.1016/j.bandl.2010.08.003.

    Abstract

    In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple right-linear unification grammar in an implicit artificial grammar learning paradigm in 32 healthy Dutch university students (natural language FMRI data were already acquired for these participants). We predicted that artificial syntax processing would engage the left inferior frontal region (BA 44/45) and that this activation would overlap with syntax-related variability observed in the natural language experiment. The main findings of this study show that the left inferior frontal region centered on BA 44/45 is active during artificial syntax processing of well-formed (grammatical) sequence independent of local subsequence familiarity. The same region is engaged to a greater extent when a syntactic violation is present and structural unification becomes difficult or impossible. The effects related to artificial syntax in the left inferior frontal region (BA 44/45) were essentially identical when we masked these with activity related to natural syntax in the same subjects. Finally, the medial temporal lobe was deactivated during this operation, consistent with the view that implicit processing does not rely on declarative memory mechanisms that engage the medial temporal lobe. In the context of recent FMRI findings, we raise the question whether Broca’s region (or subregions) is specifically related to syntactic movement operations or the processing of hierarchically nested non-adjacent dependencies in the discussion section. We conclude that this is not the case. Instead, we argue that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner, independent of whether there are any processing requirements related to syntactic movement or hierarchically nested structures. In addition, we argue that the Chomsky hierarchy is not directly relevant for neurobiological systems.
  • Poletiek, F. H., & Lai, J. (2012). How semantic biases in simple adjacencies affect learning a complex structure with non-adjacencies in AGL: A statistical account. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2046 -2054. doi:10.1098/rstb.2012.0100.

    Abstract

    A major theoretical debate in language acquisition research regards the learnability of hierarchical structures. The artificial grammar learning methodology is increasingly influential in approaching this question. Studies using an artificial centre-embedded AnBn grammar without semantics draw conflicting conclusions. This study investigates the facilitating effect of distributional biases in simple AB adjacencies in the input sample—caused in natural languages, among others, by semantic biases—on learning a centre-embedded structure. A mathematical simulation of the linguistic input and the learning, comparing various distributional biases in AB pairs, suggests that strong distributional biases might help us to grasp the complex AnBn hierarchical structure in a later stage. This theoretical investigation might contribute to our understanding of how distributional features of the input—including those caused by semantic variation—help learning complex structures in natural languages.
  • Rowbotham, S., Holler, J., Lloyd, D., & Wearden, A. (2012). How do we communicate about pain? A systematic analysis of the semantic contribution of co-speech gestures in pain-focused conversations. Journal of Nonverbal Behavior, 36, 1-21. doi:10.1007/s10919-011-0122-5.

    Abstract

    The purpose of the present study was to investigate co-speech gesture use during communication about pain. Speakers described a recent pain experience and the data were analyzed using a ‘semantic feature approach’ to determine the distribution of information across gesture and speech. This analysis revealed that a considerable proportion of pain-focused talk was accompanied by gestures, and that these gestures often contained more information about pain than speech itself. Further, some gestures represented information that was hardly represented in speech at all. Overall, these results suggest that gestures are integral to the communication of pain and need to be attended to if recipients are to obtain a fuller understanding of the pain experience and provide help and support to pain sufferers.
  • De Ruiter, J. P., Noordzij, M. L., Newman-Norlund, S., Newman-Norlund, R., Hagoort, P., Levinson, S. C., & Toni, I. (2012). Exploring the cognitive infrastructure of communication. In B. Galantucci, & S. Garrod (Eds.), Experimental Semiotics: Studies on the emergence and evolution of human communication (pp. 51-78). Amsterdam: Benjamins.

    Abstract

    Human communication is often thought about in terms of transmitted messages in a conventional code like a language. But communication requires a specialized interactive intelligence. Senders have to be able to perform recipient design, while receivers need to be able to do intention recognition, knowing that recipient design has taken place. To study this interactive intelligence in the lab, we developed a new task that taps directly into the underlying abilities to communicate in the absence of a conventional code. We show that subjects are remarkably successful communicators under these conditions, especially when senders get feedback from receivers. Signaling is accomplished by the manner in which an instrumental action is performed, such that instrumentally dysfunctional components of an action are used to convey communicative intentions. The findings have important implications for the nature of the human communicative infrastructure, and the task opens up a line of experimentation on human communication.

    Files private

    Request files
  • Scheeringa, R., Petersson, K. M., Kleinschmidt, A., Jensen, O., & Bastiaansen, M. C. M. (2012). EEG alpha power modulation of fMRI resting state connectivity. Brain Connectivity, 2, 254-264. doi:10.1089/brain.2012.0088.

    Abstract

    In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include fMRI-based functional and/or effective connectivity, and EEG/MEG-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based BOLD connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between visual cortex and the rest of the brain. The results show that when alpha power increases BOLD connectivity between primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with anterior/medial thalamus decreases and ventral-medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. Decreased connectivity within the visual system may indicate enhanced functional inhibition during higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between visual cortex and other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long range neural connectivity changes.
  • Schmale, R., Cristia, A., & Seidl, A. (2012). Toddlers recognize words in an unfamiliar accent after brief exposure. Developmental Science, 15, 732-738. doi:10.1111/j.1467-7687.2012.01175.x.

    Abstract

    Both subjective impressions and previous research with monolingual listeners suggest that a foreign accent interferes with word recognition in infants, young children, and adults. However, because being exposed to multiple accents is likely to be an everyday occurrence in many societies, it is unexpected that such non-standard pronunciations would significantly impede language processing once the listener has experience with the relevant accent. Indeed, we report that 24-month-olds successfully accommodate an unfamiliar accent in rapid word learning after less than 2 minutes of accent exposure. These results underline the robustness of our speech perception mechanisms, which allow listeners to adapt even in the absence of extensive lexical knowledge and clear known-word referents.
  • Segaert, K. (2012). Structuring language: Contributions to the neurocognition of syntax. PhD Thesis, Radboud University, Nijmegen, the Netherlands.

    Abstract

    Sprekers hebben een sterke neiging om syntactische structuren te hergebruiken in nieuwe zinnen. Wanneer we een situatie beschrijven met een passieve zin bijvoorbeeld: 'De vrouw wordt begroet door de man', zullen we voor de beschrijving van een nieuwe situatie gemakkelijker opnieuw een passieve zin gebruiken. Vooral bij moeilijke syntactische structuren is de neiging om ze te hergebruiken erg sterk. Voor gemakkelijke zinsconstructies geldt dat minder. Maar als deze toch hergebruikt worden dan gaat dit samen met een sneller initiëren van de beschrijving. Ook in het brein zien we dat het herhalen van syntactische structuren de verwerking ervan vergemakkelijkt. Bepaalde hersengebieden die zorgen voor de verwerking van syntactische structuren zijn zeer actief de eerste keer dat een syntactische structuur wordt verwerkt, en minder actief de tweede keer. Het gaat hier om een gebiedje in de frontaalkwab en een gebiedje in de temporaalkwab. Opvallend is ook dat deze gebieden de verwerking van syntactische structuren ondersteunen zowel tijdens het spreken als tijdens het luisteren.

    Additional information

    full text via Radboud Repository
  • Segaert, K., Menenti, L., Weber, K., Petersson, K. M., & Hagoort, P. (2012). Shared syntax in language production and language comprehension — An fMRI study. Cerebral Cortex, 22, 1662-1670. doi:10.1093/cercor/bhr249.

    Abstract

    During speaking and listening syntactic processing is a crucial step. It involves specifying syntactic relations between words in a sentence. If the production and comprehension modality share the neuronal substrate for syntactic processing then processing syntax in one modality should lead to adaptation effects in the other modality. In the present functional magnetic resonance imaging experiment, participants either overtly produced or heard descriptions of pictures. We looked for brain regions showing adaptation effects to the repetition of syntactic structures. In order to ensure that not just the same brain regions but also the same neuronal populations within these regions are involved in syntactic processing in speaking and listening, we compared syntactic adaptation effects within processing modalities (syntactic production-to-production and comprehension-to-comprehension priming) with syntactic adaptation effects between processing modalities (syntactic comprehension-to-production and production-to-comprehension priming). We found syntactic adaptation effects in left inferior frontal gyrus (Brodmann's area [BA] 45), left middle temporal gyrus (BA 21), and bilateral supplementary motor area (BA 6) which were equally strong within and between processing modalities. Thus, syntactic repetition facilitates syntactic processing in the brain within and across processing modalities to the same extent. We conclude that that the same neurobiological system seems to subserve syntactic processing in speaking and listening.
  • Seidl, A., & Cristia, A. (2012). Infants' learning of phonological status. Frontiers in Psychology, 3, 448. doi:10.3389/fpsyg.2012.00448.

    Abstract

    There is a substantial literature describing how infants become more sensitive to differences between native phonemes (sounds that are both present and meaningful in the input) and less sensitive to differences between non-native phonemes (sounds that are neither present nor meaningful in the input) over the course of development. Here, we review an emergent strand of literature that gives a more nuanced notion of the problem of sound category learning. This research documents infants’ discovery of phonological status, signaled by a decrease in sensitivity to sounds that map onto the same phonemic category vs. different phonemic categories. The former phones are present in the input, but their difference does not cue meaning distinctions because they are tied to one and the same phoneme. For example, the diphthong I in I’m should map to the same underlying category as the diphthong in I’d, despite the fact that the first vowel is nasal and the second oral. Because such pairs of sounds are processed differently than those than map onto different phonemes by adult speakers, the learner has to come to treat them differently as well. Interestingly, there is some evidence that infants’ sensitivity to dimensions that are allophonic in the ambient language declines as early as 11 months. We lay out behavioral research, corpora analyses, and computational work which sheds light on how infants achieve this feat at such a young age. Collectively, this work suggests that the computation of complementary distribution and the calculation of phonetic similarity operate in concert to guide infants toward a functional interpretation of sounds that are present in the input, yet not lexically contrastive. In addition to reviewing this literature, we discuss broader implications for other fundamental theoretical and empirical questions.
  • Silva, C., Faísca, L., Ingvar, M., Petersson, K. M., & Reis, A. (2012). Literacy: Exploring working memory systems. Journal of Clinical and Experimental Neuropsychology, 34(4), 369-377. doi:10.1080/13803395.2011.645017.

    Abstract

    Previous research showed an important association between reading and writing skills (literacy) and the phonological loop. However, the effects of literacy on other working memory components remain unclear. In this study, we investigated performance of illiterate subjects and their matched literate controls on verbal and nonverbal working memory tasks. Results revealed that the phonological loop is significantly influenced by literacy, while the visuospatial sketchpad appears to be less affected or not at all. Results also suggest that the central executive might be influenced by literacy, possibly as an expression of cognitive reserve.

    Files private

    Request files
  • Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., Bernard, M., Brown, A. A., Cannon, D. M., Chakravarty, M. M., Christoforou, A., Domin, M., Grimm, O., Hollinshead, M., Holmes, A. J., Homuth, G. and 184 moreStein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., Bernard, M., Brown, A. A., Cannon, D. M., Chakravarty, M. M., Christoforou, A., Domin, M., Grimm, O., Hollinshead, M., Holmes, A. J., Homuth, G., Hottenga, J.-J., Langan, C., Lopez, L. M., Hansell, N. K., Hwang, K. S., Kim, S., Laje, G., Lee, P. H., Liu, X., Loth, E., Lourdusamy, A., Mattingsdal, M., Mohnke, S., Maniega, S. M., Nho, K., Nugent, A. C., O'Brien, C., Papmeyer, M., Pütz, B., Ramasamy, A., Rasmussen, J., Rijpkema, M., Risacher, S. L., Roddey, J. C., Rose, E. J., Ryten, M., Shen, L., Sprooten, E., Strengman, E., Teumer, A., Trabzuni, D., Turner, J., van Eijk, K., van Erp, T. G. M., van Tol, M.-J., Wittfeld, K., Wolf, C., Woudstra, S., Aleman, A., Alhusaini, S., Almasy, L., Binder, E. B., Brohawn, D. G., Cantor, R. M., Carless, M. A., Corvin, A., Czisch, M., Curran, J. E., Davies, G., de Almeida, M. A. A., Delanty, N., Depondt, C., Duggirala, R., Dyer, T. D., Erk, S., Fagerness, J., Fox, P. T., Freimer, N. B., Gill, M., Göring, H. H. H., Hagler, D. J., Hoehn, D., Holsboer, F., Hoogman, M., Hosten, N., Jahanshad, N., Johnson, M. P., Kasperaviciute, D., Kent, J. W. J., Kochunov, P., Lancaster, J. L., Lawrie, S. M., Liewald, D. C., Mandl, R., Matarin, M., Mattheisen, M., Meisenzahl, E., Melle, I., Moses, E. K., Mühleisen, T. W., Nauck, M., Nöthen, M. M., Olvera, R. L., Pandolfo, M., Pike, G. B., Puls, R., Reinvang, I., Rentería, M. E., Rietschel, M., Roffman, J. L., Royle, N. A., Rujescu, D., Savitz, J., Schnack, H. G., Schnell, K., Seiferth, N., Smith, C., Hernández, M. C. V., Steen, V. M., den Heuvel, M. V., van der Wee, N. J., Haren, N. E. M. V., Veltman, J. A., Völzke, H., Walker, R., Westlye, L. T., Whelan, C. D., Agartz, I., Boomsma, D. I., Cavalleri, G. L., Dale, A. M., Djurovic, S., Drevets, W. C., Hagoort, P., Hall, J., Heinz, A., Clifford, R. J., Foroud, T. M., Le Hellard, S., Macciardi, F., Montgomery, G. W., Poline, J. B., Porteous, D. J., Sisodiya, S. M., Starr, J. M., Sussmann, J., Toga, A. W., Veltman, D. J., Walter, H., Weiner, M. W., EPIGEN Consortium, IMAGENConsortium, Saguenay Youth Study Group, Bis, J. C., Ikram, M. A., Smith, A. V., Gudnason, V., Tzourio, C., Vernooij, M. W., Launer, L. J., DeCarli, C., Seshadri, S., Heart, C. f., Consortium, A. R. i. G. E. (., Andreassen, O. A., Apostolova, L. G., Bastin, M. E., Blangero, J., Brunner, H. G., Buckner, R. L., Cichon, S., Coppola, G., de Zubicaray, G. I., Deary, I. J., Donohoe, G., de Geus, E. J. C., Espeseth, T., Fernández, G., Glahn, D. C., Grabe, H. J., Hardy, J., Hulshoff Pol, H. E., Jenkinson, M., Kahn, R. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Meyer-Lindenberg, A., Morris, D. W., Müller-Myhsok, B., Nichols, T. E., Ophoff, R. A., Paus, T., Pausova, Z., Penninx, B. W., Sämann, P. G., Saykin, A. J., Schumann, G., Smoller, J. W., Wardlaw, J. M., Weale, M. E., Martin, N. G., Franke, B., Wright, M. J., Thompson, P. M., & the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44, 552-561. doi:10.1038/ng.2250.

    Abstract

    Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10(-16)) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10(-12)). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10(-7)).
  • Sumer, B., Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2012). Development of locative expressions by Turkish deaf and hearing children: Are there modality effects? In A. K. Biller, E. Y. Chung, & A. E. Kimball (Eds.), Proceedings of the 36th Annual Boston University Conference on Language Development (BUCLD 36) (pp. 568-580). Boston: Cascadilla Press.
  • Udden, J., & Bahlmann, J. (2012). A rostro-caudal gradient of structured sequence processing in the left inferior frontal gyrus [Review article]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2023-2032. doi:10.1098/rstb.2012.0009.

    Abstract

    In this paper, we present two novel perspectives on the function of the left inferior frontal gyrus (LIFG). First, a structured sequence processing perspective facilitates the search for functional segregation within the LIFG and provides a way to express common aspects across cognitive domains including language, music and action. Converging evidence from functional magnetic resonance imaging and transcranial magnetic stimulation studies suggests that the LIFG is engaged in sequential processing in artificial grammar learning, independently of particular stimulus features of the elements (whether letters, syllables or shapes are used to build up sequences). The LIFG has been repeatedly linked to processing of artificial grammars across all different grammars tested, whether they include non-adjacent dependencies or mere adjacent dependencies. Second, we apply the sequence processing perspective to understand how the functional segregation of semantics, syntax and phonology in the LIFG can be integrated in the general organization of the lateral prefrontal cortex (PFC). Recently, it was proposed that the functional organization of the lateral PFC follows a rostro-caudal gradient, such that more abstract processing in cognitive control is subserved by more rostral regions of the lateral PFC. We explore the literature from the viewpoint that functional segregation within the LIFG can be embedded in a general rostro-caudal abstraction gradient in the lateral PFC. If the lateral PFC follows a rostro-caudal abstraction gradient, then this predicts that the LIFG follows the same principles, but this prediction has not yet been tested or explored in the LIFG literature. Integration might provide further insights into the functional architecture of the LIFG and the lateral PFC.
  • Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2012). Implicit acquisition of grammars with crossed and nested non-adjacent dependencies: Investigating the push-down stack model. Cognitive Science, 36, 1078-1101. doi:10.1111/j.1551-6709.2012.01235.x.

    Abstract

    A recent hypothesis in empirical brain research on language is that the fundamental difference between animal and human communication systems is captured by the distinction between finite-state and more complex phrase-structure grammars, such as context-free and context-sensitive grammars. However, the relevance of this distinction for the study of language as a neurobiological system has been questioned and it has been suggested that a more relevant and partly analogous distinction is that between non-adjacent and adjacent dependencies. Online memory resources are central to the processing of non-adjacent dependencies as information has to be maintained across intervening material. One proposal is that an external memory device in the form of a limited push-down stack is used to process non-adjacent dependencies. We tested this hypothesis in an artificial grammar learning paradigm where subjects acquired non-adjacent dependencies implicitly. Generally, we found no qualitative differences between the acquisition of non-adjacent dependencies and adjacent dependencies. This suggests that although the acquisition of non-adjacent dependencies requires more exposure to the acquisition material, it utilizes the same mechanisms used for acquiring adjacent dependencies. We challenge the push-down stack model further by testing its processing predictions for nested and crossed multiple non-adjacent dependencies. The push-down stack model is partly supported by the results, and we suggest that stack-like properties are some among many natural properties characterizing the underlying neurophysiological mechanisms that implement the online memory resources used in language and structured sequence processing.
  • Udden, J. (2012). Language as structured sequences: a causal role of Broca's region in sequence processing. PhD Thesis, Karolinska Institutet, Stockholm.

    Abstract

    In this thesis I approach language as a neurobiological system. I defend a sequence processing perspective on language and on the function of Broca's region in the left inferior frontal gyrus (LIFG). This perspective provides a way to express common structural aspects of language, music and action, which all engage the LIFG. It also facilitates the comparison of human language and structured sequence processing in animals. Research on infants, song-birds and non-human primates suggests an interesting role for non-adjacent dependencies in language acquisition and the evolution of language. In a series of experimental studies using a sequence processing paradigm called artificial grammar learning (AGL), we have investigated sequences with adjacent and non-adjacent dependencies. Our behavioral and transcranial magnetic stimulation (TMS) studies show that healthy subjects successfully discriminate between grammatical and non-grammatical sequences after having acquired aspects of a grammar with nested or crossed non-adjacent dependencies implicitly. There were no indications of separate acquisition/processing mechanisms for sequence processing of adjacent and non-adjacent dependencies, although acquisition of non-adjacent dependencies takes more time. In addition, we studied the causal role of Broca‟s region in processing artificial syntax. Although syntactic processing has already been robustly correlated with activity in Broca's region, the causal role of Broca's region in syntactic processing, in particular syntactic comprehension has been unclear. Previous lesion studies have shown that a lesion in Broca's region is neither a necessary nor sufficient condition to induce e.g. syntactic deficits. Subsequent to transcranial magnetic stimulation of Broca‟s region, discrimination of grammatical sequences with non-adjacent dependencies from non-grammatical sequences was impaired, compared to when a language irrelevant control region (vertex) was stimulated. Two additional experiments show perturbation of discrimination performance for grammars with adjacent dependencies after stimulation of Broca's region. Together, these results support the view that Broca‟s region plays a causal role in implicit structured sequence processing.
  • Urrutia, M., de Vega, M., & Bastiaansen, M. C. M. (2012). Understanding counterfactuals in discourse modulates ERP and oscillatory gamma rhythms in the EEG. Brain Research, 1455, 40-55. doi:10.1016/j.brainres.2012.03.032.

    Abstract

    This study provides ERP and oscillatory dynamics data associated with the comprehension of narratives involving counterfactual events. Participants were given short stories describing an initial situation (“Marta wanted to plant flowers in her garden…”), followed by a critical sentence describing a new situation in either a factual (“Since she found a spade, she started to dig a hole”) or counterfactual format (“If she had found a spade, she would have started to dig a hole”), and then a continuation sentence that was either related to the initial situation (“she bought a spade”) or to the new one (“she planted roses”). The ERPs recorded for the continuation sentences related to the initial situation showed larger negativity after factuals than after counterfactuals, suggesting that the counterfactual's presupposition – the events did not occur – prevents updating the here-and-now of discourse. By contrast, continuation sentences related to the new situation elicited similar ERPs under both factual and counterfactual contexts, suggesting that counterfactuals also activate momentarily an alternative “as if” meaning. However, the reduction of gamma power following counterfactuals, suggests that the “as if” meaning is not integrated into the discourse, nor does it contribute to semantic unification processes.
  • Van den Brink, D., Van Berkum, J. J. A., Bastiaansen, M. C. M., Tesink, C. M. J. Y., Kos, M., Buitelaar, J. K., & Hagoort, P. (2012). Empathy matters: ERP evidence for inter-individual differences in social language processing. Social, Cognitive and Affective Neuroscience, 7, 173-182. doi:10.1093/scan/nsq094.

    Abstract

    When an adult claims he cannot sleep without his teddy bear, people tend to react surprised. Language interpretation is, thus, influenced by social context, such as who the speaker is. The present study reveals inter-individual differences in brain reactivity to social aspects of language. Whereas women showed brain reactivity when stereotype-based inferences about a speaker conflicted with the content of the message, men did not. This sex difference in social information processing can be explained by a specific cognitive trait, one’s ability to empathize. Individuals who empathize to a greater degree revealed larger N400 effects (as well as a larger increase in γ-band power) to socially relevant information. These results indicate that individuals with high-empathizing skills are able to rapidly integrate information about the speaker with the content of the message, as they make use of voice-based inferences about the speaker to process language in a top-down manner. Alternatively, individuals with lower empathizing skills did not use information about social stereotypes in implicit sentence comprehension, but rather took a more bottom-up approach to the processing of these social pragmatic sentences.
  • Van Berkum, J. J. A. (2012). The electrophysiology of discourse and conversation. In M. J. Spivey, K. McRae, & M. F. Joanisse (Eds.), The Cambridge handbook of psycholinguistics (pp. 589-614). New York: Cambridge University Press.

    Abstract

    Introduction: What’s happening in the brains of two people having a conversation? One reasonable guess is that in the fMRI scanner we’d see most of their brains light up. Another is that their EEG will be a total mess, reflecting dozens of interacting neuronal systems. Conversation recruits all of the basic language systems reviewed in this book. It also heavily taxes cognitive systems more likely to be found in handbooks of memory, attention and control, or social cognition (Brownell & Friedman, 2001). With most conversations going beyond the single utterance, for instance, they place a heavy load on episodic memory, as well as on the systems that allow us to reallocate cognitive resources to meet the demands of a dynamically changing situation. Furthermore, conversation is a deeply social and collaborative enterprise (Clark, 1996; this volume), in which interlocutors have to keep track of each others state of mind and coordinate on such things as taking turns, establishing common ground, and the goals of the conversation.
  • Van Alphen, P. M., & Van Berkum, J. J. A. (2012). Semantic involvement of initial and final lexical embeddings during sense-making: The advantage of starting late. Frontiers in Psychology, 3, 190. doi:10.3389/fpsyg.2012.00190.

    Abstract

    During spoken language interpretation, listeners rapidly relate the meaning of each individual word to what has been said before. However, spoken words often contain spurious other words, like 'day' in 'daisy', or 'dean' in 'sardine'. Do listeners also relate the meaning of such unintended, spurious words to the prior context? We used ERPs to look for transient meaning-based N400 effects in sentences that were completely plausible at the level of words intended by the speaker, but contained an embedded word whose meaning clashed with the context. Although carrier words with an initial embedding ('day' in 'daisy') did not elicit an embedding-related N400 effect relative to matched control words without embedding, carrier words with a final embedding ('dean' in 'sardine') did elicit such an effect. Together with prior work from our lab and the results of a Shortlist B simulation, our findings suggest that listeners do semantically interpret embedded words, albeit not under all conditions. We explain the latter by assuming that the sense-making system adjusts its hypothesis for how to interpret the external input at every new syllable, in line with recent ideas of active sampling in perception.
  • Van Ackeren, M. J., Casasanto, D., Bekkering, H., Hagoort, P., & Rueschemeyer, S.-A. (2012). Pragmatics in action: Indirect requests engage theory of mind areas and the cortical motor network. Journal of Cognitive Neuroscience, 24, 2237-2247. doi:10.1162/jocn_a_00274.

    Abstract

    Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word “grasp” elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59–70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical–semantic representations. Human Brain Mapping, doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance “It is hot here!” in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical motor areas reliably more than comprehension of sentences devoid of any implicit motor information. This is true despite the fact that IR sentences contain no lexical reference to action. (2) Comprehension of IR sentences also reliably activates substantial portions of the theory of mind network, known to be involved in making inferences about mental states of others. The implications of these findings for embodied theories of language are discussed.
  • De Vries, M. H., Petersson, K. M., Geukes, S., Zwitserlood, P., & Christiansen, M. H. (2012). Processing multiple non-adjacent dependencies: Evidence from sequence learning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2065-2076. doi:10.1098/rstb.2011.0414.

    Abstract

    Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A1A2A3B3B2B1) and crossed dependencies (A1A2A3B1B2B3), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A1A2A3B3_B1), reminiscent of the ‘missing-verb effect’ observed in English and French, but not with crossed structures (A1A2A3B1_B3). Prior linguistic experience did not play a major role: native speakers of German and Dutch—which permit nested and crossed dependencies, respectively—showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i.e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning.
  • Wagensveld, B., Segers, E., Van Alphen, P. M., Hagoort, P., & Verhoeven, L. (2012). A neurocognitive perspective on rhyme awareness: The N450 rhyme effect. Brain Research, 1483, 63-70. doi:10.1016/j.brainres.2012.09.018.

    Abstract

    Rhyme processing is reflected in the electrophysiological signals of the brain as a negative deflection for non-rhyming as compared to rhyming stimuli around 450 ms after stimulus onset. Studies have shown that this N450 component is not solely sensitive to rhyme but also responds to other types of phonological overlap. In the present study, we examined whether the N450 component can be used to gain insight into the global similarity effect, indicating that rhyme judgment skills decrease when participants are presented with word pairs that share a phonological overlap but do not rhyme (e.g., bell–ball). We presented 20 adults with auditory rhyming, globally similar overlapping and unrelated word pairs. In addition to measuring behavioral responses by means of a yes/no button press, we also took EEG measures. The behavioral data showed a clear global similarity effect; participants judged overlapping pairs more slowly than unrelated pairs. However, the neural outcomes did not provide evidence that the N450 effect responds differentially to globally similar and unrelated word pairs, suggesting that globally similar and dissimilar non-rhyming pairs are processed in a similar fashion at the stage of early lexical access.
  • Wagensveld, B., Van Alphen, P. M., Segers, E., & Verhoeven, L. (2012). The nature of rhyme processing in preliterate children. British Journal of Educational Psychology, 82, 672-689. doi:10.1111/j.2044-8279.2011.02055.x.

    Abstract

    Background. Rhyme awareness is one of the earliest forms of phonological awareness to develop and is assessed in many developmental studies by means of a simple rhyme task. The influence of more demanding experimental paradigms on rhyme judgment performance is often neglected. Addressing this issue may also shed light on whether rhyme processing is more global or analytical in nature. Aims. The aim of the present study was to examine whether lexical status and global similarity relations influenced rhyme judgments in kindergarten children and if so, if there is an interaction between these two factors. Sample. Participants were 41 monolingual Dutch-speaking preliterate kindergartners (average age 6.0 years) who had not yet received any formal reading education. Method. To examine the effects of lexical status and phonological similarity processing, the kindergartners were asked to make rhyme judgements on (pseudo) word targets that rhymed, phonologically overlapped or were unrelated to (pseudo) word primes. Results. Both a lexicality effect (pseudo-words were more difficult than words) and a global similarity effect (globally similar non-rhyming items were more difficult to reject than unrelated items) were observed. In addition, whereas in words the global similarity effect was only present in accuracy outcomes, in pseudo-words it was also observed in the response latencies. Furthermore, a large global similarity effect in pseudo-words correlated with a low score on short-term memory skills and grapheme knowledge. Conclusions. Increasing task demands led to a more detailed assessment of rhyme processing skills. Current assessment paradigms should therefore be extended with more demanding conditions. In light of the views on rhyme processing, we propose that a combination of global and analytical strategies is used to make a correct rhyme judgment.
  • Wang, L., Jensen, O., Van den Brink, D., Weder, N., Schoffelen, J.-M., Magyari, L., Hagoort, P., & Bastiaansen, M. C. M. (2012). Beta oscillations relate to the N400m during language comprehension. Human Brain Mapping, 33, 2898-2912. doi:10.1002/hbm.21410.

    Abstract

    The relationship between the evoked responses (ERPs/ERFs) and the event-related changes in EEG/MEG power that can be observed during sentence-level language comprehension is as yet unclear. This study addresses a possible relationship between MEG power changes and the N400m component of the event-related field. Whole-head MEG was recorded while subjects listened to spoken sentences with incongruent (IC) or congruent (C) sentence endings. A clear N400m was observed over the left hemisphere, and was larger for the IC sentences than for the C sentences. A time–frequency analysis of power revealed a decrease in alpha and beta power over the left hemisphere in roughly the same time range as the N400m for the IC relative to the C condition. A linear regression analysis revealed a positive linear relationship between N400m and beta power for the IC condition, not for the C condition. No such linear relation was found between N400m and alpha power for either condition. The sources of the beta decrease were estimated in the LIFG, a region known to be involved in semantic unification operations. One source of the N400m was estimated in the left superior temporal region, which has been related to lexical retrieval. We interpret our data within a framework in which beta oscillations are inversely related to the engagement of task-relevant brain networks. The source reconstructions of the beta power suppression and the N400m effect support the notion of a dynamic communication between the LIFG and the left superior temporal region during language comprehension.
  • Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2012). Information structure influences depth of syntactic processing: Event-related potential evidence for the Chomsky illusion. PLoS One, 7(10), e47917. doi:10.1371/journal.pone.0047917.

    Abstract

    Information structure facilitates communication between interlocutors by highlighting relevant information. It has previously been shown that information structure modulates the depth of semantic processing. Here we used event-related potentials to investigate whether information structure can modulate the depth of syntactic processing. In question-answer pairs, subtle (number agreement) or salient (phrase structure) syntactic violations were placed either in focus or out of focus through information structure marking. P600 effects to these violations reflect the depth of syntactic processing. For subtle violations, a P600 effect was observed in the focus condition, but not in the non-focus condition. For salient violations, comparable P600 effects were found in both conditions. These results indicate that information structure can modulate the depth of syntactic processing, but that this effect depends on the salience of the information. When subtle violations are not in focus, they are processed less elaborately. We label this phenomenon the Chomsky illusion.
  • Wang, L., Zhu, Z., & Bastiaansen, M. C. M. (2012). Integration or predictability? A further specification of the functional role of gamma oscillations in language comprehension. Frontiers in Psychology, 3, 187. doi:10.3389/fpsyg.2012.00187.

    Abstract

    Gamma-band neuronal synchronization during sentence-level language comprehension has previously been linked with semantic unification. Here, we attempt to further narrow down the functional significance of gamma during language comprehension, by distinguishing between two aspects of semantic unification: successful integration of word meaning into the sentence context, and prediction of upcoming words. We computed event-related potentials (ERPs) and frequency band-specific electroencephalographic (EEG) power changes while participants read sentences that contained a critical word (CW) that was (1) both semantically congruent and predictable (high cloze, HC), (2) semantically congruent but unpredictable (low cloze, LC), or (3) semantically incongruent (and therefore also unpredictable; semantic violation, SV). The ERP analysis showed the expected parametric N400 modulation (HC < LC < SV). The time-frequency analysis showed qualitatively different results. In the gamma-frequency range, we observed a power increase in response to the CW in the HC condition, but not in the LC and the SV conditions. Additionally, in the theta frequency range we observed a power increase in the SV condition only. Our data provide evidence that gamma power increases are related to the predictability of an upcoming word based on the preceding sentence context, rather than to the integration of the incoming word’s semantics into the preceding context. Further, our theta band data are compatible with the notion that theta band synchronization in sentence comprehension might be related to the detection of an error in the language input.
  • Weber, K. (2012). The language learning brain: Evidence from second language learning and bilingual studies of syntactic processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    Many people speak a second language next to their mother tongue. How do they learn this language and how does the brain process it compared to the native language? A second language can be learned without explicit instruction. Our brains automatically pick up grammatical structures, such as word order, when these structures are repeated frequently during learning. The learning takes place within hours or days and the same brain areas, such as frontal and temporal brain regions, that process our native language are very quickly activated. When people master a second language very well, even the same neuronal populations in these language brain areas are involved. This is especially the case when the grammatical structures are similar. In conclusion, it appears that a second language builds on the existing cognitive and neural mechanisms of the native language as much as possible.
  • Willems, R. M., & Francken, J. C. (2012). Embodied cognition: Taking the next step. Frontiers in Psychology, 3, 582. doi:10.3389/fpsyg.2012.00582.

    Abstract

    Recent years have seen a large amount of empirical studies related to ‘embodied cognition’. While interesting and valuable, there is something dissatisfying with the current state of affairs in this research domain. Hypotheses tend to be underspecified, testing in general terms for embodied versus disembodied processing. The lack of specificity of current hypotheses can easily lead to an erosion of the embodiment concept, and result in a situation in which essentially any effect is taken as positive evidence. Such erosion is not helpful to the field and does not do justice to the importance of embodiment. Here we want to take stock, and formulate directions for how it can be studied in a more fruitful fashion. As an example we will describe few example studies that have investigated the role of sensori-motor systems in the coding of meaning (‘embodied semantics’). Instead of focusing on the dichotomy between embodied and disembodied theories, we suggest that the field move forward and ask how and when sensori-motor systems and behavior are involved in cognition.
  • Xiang, H., Dediu, D., Roberts, L., Van Oort, E., Norris, D., & Hagoort, P. (2012). The structural connectivity underpinning language aptitude, working memory and IQ in the perisylvian language network. Language Learning, 62(Supplement S2), 110-130. doi:10.1111/j.1467-9922.2012.00708.x.

    Abstract

    We carried out the first study on the relationship between individual language aptitude and structural connectivity of language pathways in the adult brain. We measured four components of language aptitude (vocabulary learning, VocL; sound recognition, SndRec; sound-symbol correspondence, SndSym; and grammatical inferencing, GrInf) using the LLAMA language aptitude test (Meara, 2005). Spatial working memory (SWM), verbal working memory (VWM) and IQ were also measured as control factors. Diffusion Tensor Imaging (DTI) was employed to investigate the structural connectivity of language pathways in the perisylvian language network. Principal Component Analysis (PCA) on behavioural measures suggests that a general ability might be important to the first stages of L2 acquisition. It also suggested that VocL, SndSy and SWM are more closely related to general IQ than SndRec and VocL, and distinguished the tasks specifically designed to tap into L2 acquisition (VocL, SndRec,SndSym and GrInf) from more generic measures (IQ, SWM and VWM). Regression analysis suggested significant correlations between most of these behavioural measures and the structural connectivity of certain language pathways, i.e., VocL and BA47-Parietal pathway, SndSym and inter-hemispheric BA45 pathway, GrInf and BA45-Temporal pathway and BA6-Temporal pathway, IQ and BA44-Parietal pathway, BA47-Parietal pathway, BA47-Temporal pathway and inter-hemispheric BA45 pathway, SWM and inter-hemispheric BA6 pathway and BA47-Parietal pathway, and VWM and BA47-Temporal pathway. These results are discussed in relation to relevant findings in the literature.
  • Xiang, H. (2012). The language networks of the brain. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    In recent decades, neuroimaging studies on the neural infrastructure of language are usually (or mostly) conducted with certain on-line language processing tasks. These functional neuroimaging studies helped to localize the language areas in the brain and to investigate the brain activity during explicit language processing. However, little is known about what is going on with the language areas when the brain is ‘at rest’, i.e., when there is no explicit language processing running. Taking advantage of the fcMRI and DTI techniques, this thesis is able to investigate the language function ‘off-line’ at the neuronal network level and the connectivity among language areas in the brain. Based on patient studies, the traditional, classical model on the perisylvian language network specifies a “Broca’ area – Arcuate Fasciculus – Werinicke’s area” loop (Ojemann 1991). With the help of modern neuroimaging techniques, researchers have been able to track language pathways that involve more brain structures than are in the classical model, and relate them to certain language functions. In such a background, a large part of this thesis made a contribution to the study of the topology of the language networks. It revealed that the language networks form a topographical functional connectivity pattern in the left hemisphere for the right-handers. This thesis also revealed the importance of structural hubs, such as Broca’s and Wernicke’s areas, which have more connectivity to other brain areas and play a central role in the language networks. Furthermore, this thesis revealed both functionally and structurally lateralized language networks in the brain. The consistency between what is found in this thesis and what has been known from previous functional studies seems to suggest, that the human brain is optimized and ‘ready’ for the language function even when there is currently no explicit language-processing running.
  • Zhu, Z., Hagoort, P., Zhang, J. X., Feng, G., Chen, H.-C., Bastiaansen, M. C. M., & Wang, S. (2012). The anterior left inferior frontal gyrus contributes to semantic unification. NeuroImage, 60, 2230-2237. doi:10.1016/j.neuroimage.2012.02.036.

    Abstract

    Semantic unification, the process by which small blocks of semantic information are combined into a coherent utterance, has been studied with various types of tasks. However, whether the brain activations reported in these studies are attributed to semantic unification per se or to other task-induced concomitant processes still remains unclear. The neural basis for semantic unification in sentence comprehension was examined using event-related potentials (ERP) and functional Magnetic Resonance Imaging (fMRI). The semantic unification load was manipulated by varying the goodness of fit between a critical word and its preceding context (in high cloze, low cloze and violation sentences). The sentences were presented in a serial visual presentation mode. The participants were asked to perform one of three tasks: semantic congruency judgment (SEM), silent reading for comprehension (READ), or font size judgment (FONT), in separate sessions. The ERP results showed a similar N400 amplitude modulation by the semantic unification load across all of the three tasks. The brain activations associated with the semantic unification load were found in the anterior left inferior frontal gyrus (aLIFG) in the FONT task and in a widespread set of regions in the other two tasks. These results suggest that the aLIFG activation reflects a semantic unification, which is different from other brain activations that may reflect task-specific strategic processing.

    Additional information

    Zhu_2012_suppl.dot
  • Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2012). An empirical investigation of expression of multiple entities in Turkish Sign Language (TİD): Considering the effects of modality. Lingua, 122, 1636 -1667. doi:10.1016/j.lingua.2012.08.010.

    Abstract

    This paper explores the expression of multiple entities in Turkish Sign Language (Türk İşaret Dili; TİD), a less well-studied sign language. It aims to provide a comprehensive description of the ways and frequencies in which entity plurality in this language is expressed, both within and outside the noun phrase. We used a corpus that includes both elicited and spontaneous data from native signers. The results reveal that most of the expressions of multiple entities in TİD are iconic, spatial strategies (i.e. localization and spatial plural predicate inflection) none of which, we argue, should be considered as genuine plural marking devices with the main aim of expressing plurality. Instead, the observed devices for localization and predicate inflection allow for a plural interpretation when multiple locations in space are used. Our data do not provide evidence that TİD employs (productive) morphological plural marking (i.e. reduplication) on nouns, in contrast to some other sign languages and many spoken languages. We relate our findings to expression of multiple entities in other signed languages and in spoken languages and discuss these findings in terms of modality effects on expression of multiple entities in human language.

Share this page