Publications

Displaying 1 - 6 of 6
  • Basnakova, J. (2019). Beyond the language given: The neurobiological infrastructure for pragmatic inferencing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Franken, M. K. (2018). Listening for speaking: Investigations of the relationship between speech perception and production. PhD Thesis, Radboud University, Nijmegen.

    Abstract

    Speaking and listening are complex tasks that we perform on a daily basis, almost without conscious effort. Interestingly, speaking almost never occurs without listening: whenever we speak, we at least hear our own speech. The research in this thesis is concerned with how the perception of our own speech influences our speaking behavior. We show that unconsciously, we actively monitor this auditory feedback of our own speech. This way, we can efficiently take action and adapt articulation when an error occurs and auditory feedback does not correspond to our expectation. Processing the auditory feedback of our speech does not, however, automatically affect speech production. It is subject to a number of constraints. For example, we do not just track auditory feedback, but also its consistency. If auditory feedback is more consistent over time, it has a stronger influence on speech production. In addition, we investigated how auditory feedback during speech is processed in the brain, using magnetoencephalography (MEG). The results suggest the involvement of a broad cortical network including both auditory and motor-related regions. This is consistent with the view that the auditory center of the brain is involved in comparing auditory feedback to our expectation of auditory feedback. If this comparison yields a mismatch, motor-related regions of the brain can be recruited to alter the ongoing articulations.

    Additional information

    full text via Radboud Repository
  • Segaert, K. (2012). Structuring language: Contributions to the neurocognition of syntax. PhD Thesis, Radboud University, Nijmegen, the Netherlands.

    Abstract

    Sprekers hebben een sterke neiging om syntactische structuren te hergebruiken in nieuwe zinnen. Wanneer we een situatie beschrijven met een passieve zin bijvoorbeeld: 'De vrouw wordt begroet door de man', zullen we voor de beschrijving van een nieuwe situatie gemakkelijker opnieuw een passieve zin gebruiken. Vooral bij moeilijke syntactische structuren is de neiging om ze te hergebruiken erg sterk. Voor gemakkelijke zinsconstructies geldt dat minder. Maar als deze toch hergebruikt worden dan gaat dit samen met een sneller initiëren van de beschrijving. Ook in het brein zien we dat het herhalen van syntactische structuren de verwerking ervan vergemakkelijkt. Bepaalde hersengebieden die zorgen voor de verwerking van syntactische structuren zijn zeer actief de eerste keer dat een syntactische structuur wordt verwerkt, en minder actief de tweede keer. Het gaat hier om een gebiedje in de frontaalkwab en een gebiedje in de temporaalkwab. Opvallend is ook dat deze gebieden de verwerking van syntactische structuren ondersteunen zowel tijdens het spreken als tijdens het luisteren.

    Additional information

    full text via Radboud Repository
  • Udden, J. (2012). Language as structured sequences: a causal role of Broca's region in sequence processing. PhD Thesis, Karolinska Institutet, Stockholm.

    Abstract

    In this thesis I approach language as a neurobiological system. I defend a sequence processing perspective on language and on the function of Broca's region in the left inferior frontal gyrus (LIFG). This perspective provides a way to express common structural aspects of language, music and action, which all engage the LIFG. It also facilitates the comparison of human language and structured sequence processing in animals. Research on infants, song-birds and non-human primates suggests an interesting role for non-adjacent dependencies in language acquisition and the evolution of language. In a series of experimental studies using a sequence processing paradigm called artificial grammar learning (AGL), we have investigated sequences with adjacent and non-adjacent dependencies. Our behavioral and transcranial magnetic stimulation (TMS) studies show that healthy subjects successfully discriminate between grammatical and non-grammatical sequences after having acquired aspects of a grammar with nested or crossed non-adjacent dependencies implicitly. There were no indications of separate acquisition/processing mechanisms for sequence processing of adjacent and non-adjacent dependencies, although acquisition of non-adjacent dependencies takes more time. In addition, we studied the causal role of Broca‟s region in processing artificial syntax. Although syntactic processing has already been robustly correlated with activity in Broca's region, the causal role of Broca's region in syntactic processing, in particular syntactic comprehension has been unclear. Previous lesion studies have shown that a lesion in Broca's region is neither a necessary nor sufficient condition to induce e.g. syntactic deficits. Subsequent to transcranial magnetic stimulation of Broca‟s region, discrimination of grammatical sequences with non-adjacent dependencies from non-grammatical sequences was impaired, compared to when a language irrelevant control region (vertex) was stimulated. Two additional experiments show perturbation of discrimination performance for grammars with adjacent dependencies after stimulation of Broca's region. Together, these results support the view that Broca‟s region plays a causal role in implicit structured sequence processing.
  • Weber, K. (2012). The language learning brain: Evidence from second language learning and bilingual studies of syntactic processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    Many people speak a second language next to their mother tongue. How do they learn this language and how does the brain process it compared to the native language? A second language can be learned without explicit instruction. Our brains automatically pick up grammatical structures, such as word order, when these structures are repeated frequently during learning. The learning takes place within hours or days and the same brain areas, such as frontal and temporal brain regions, that process our native language are very quickly activated. When people master a second language very well, even the same neuronal populations in these language brain areas are involved. This is especially the case when the grammatical structures are similar. In conclusion, it appears that a second language builds on the existing cognitive and neural mechanisms of the native language as much as possible.
  • Xiang, H. (2012). The language networks of the brain. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    In recent decades, neuroimaging studies on the neural infrastructure of language are usually (or mostly) conducted with certain on-line language processing tasks. These functional neuroimaging studies helped to localize the language areas in the brain and to investigate the brain activity during explicit language processing. However, little is known about what is going on with the language areas when the brain is ‘at rest’, i.e., when there is no explicit language processing running. Taking advantage of the fcMRI and DTI techniques, this thesis is able to investigate the language function ‘off-line’ at the neuronal network level and the connectivity among language areas in the brain. Based on patient studies, the traditional, classical model on the perisylvian language network specifies a “Broca’ area – Arcuate Fasciculus – Werinicke’s area” loop (Ojemann 1991). With the help of modern neuroimaging techniques, researchers have been able to track language pathways that involve more brain structures than are in the classical model, and relate them to certain language functions. In such a background, a large part of this thesis made a contribution to the study of the topology of the language networks. It revealed that the language networks form a topographical functional connectivity pattern in the left hemisphere for the right-handers. This thesis also revealed the importance of structural hubs, such as Broca’s and Wernicke’s areas, which have more connectivity to other brain areas and play a central role in the language networks. Furthermore, this thesis revealed both functionally and structurally lateralized language networks in the brain. The consistency between what is found in this thesis and what has been known from previous functional studies seems to suggest, that the human brain is optimized and ‘ready’ for the language function even when there is currently no explicit language-processing running.

Share this page