Publications

Displaying 1 - 20 of 20
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Rommers, J., & Federmeier, K. D. (2018). Electrophysiological methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 247-265). Hoboken: Wiley.
  • Udden, J., & Männel, C. (2018). Artificial grammar learning and its neurobiology in relation to language processing and development. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 755-783). Oxford: Oxford University Press.

    Abstract

    The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Chen, A., & Lai, V. T. (2011). Comb or coat: The role of intonation in online reference resolution in a second language. In W. Zonneveld, & H. Quené (Eds.), Sound and Sounds. Studies presented to M.E.H. (Bert) Schouten on the occasion of his 65th birthday (pp. 57-68). Utrecht: UiL OTS.

    Abstract

    1 Introduction In spoken sentence processing, listeners do not wait till the end of a sentence to decipher what message is conveyed. Rather, they make predictions on the most plausible interpretation at every possible point in the auditory signal on the basis of all kinds of linguistic information (e.g., Eberhard et al. 1995; Alman and Kamide 1999, 2007). Intonation is one such kind of linguistic information that is efficiently used in spoken sentence processing. The evidence comes primarily from recent work on online reference resolution conducted in the visual-world eyetracking paradigm (e.g., Tanenhaus et al. 1995). In this paradigm, listeners are shown a visual scene containing a number of objects and listen to one or two short sentences about the scene. They are asked to either inspect the visual scene while listening or to carry out the action depicted in the sentence(s) (e.g., 'Touch the blue square'). Listeners' eye movements directed to each object in the scene are monitored and time-locked to pre-defined time points in the auditory stimulus. Their predictions on the upcoming referent and sources for the predictions in the auditory signal are examined by analysing fixations to the relevant objects in the visual scene before the acoustic information on the referent is available
  • Chu, M., & Kita, S. (2011). Microgenesis of gestures during mental rotation tasks recapitulates ontogenesis. In G. Stam, & M. Ishino (Eds.), Integrating gestures: The interdisciplinary nature of gesture (pp. 267-276). Amsterdam: John Benjamins.

    Abstract

    People spontaneously produce gestures when they solve problems or explain their solutions to a problem. In this chapter, we will review and discuss evidence on the role of representational gestures in problem solving. The focus will be on our recent experiments (Chu & Kita, 2008), in which we used Shepard-Metzler type of mental rotation tasks to investigate how spontaneous gestures revealed the development of problem solving strategy over the course of the experiment and what role gesture played in the development process. We found that when solving novel problems regarding the physical world, adults go through similar symbolic distancing (Werner & Kaplan, 1963) and internalization (Piaget, 1968) processes as those that occur during young children’s cognitive development and gesture facilitates such processes.
  • Fitz, H., Chang, F., & Christansen, M. H. (2011). A connectionist account of the acquisition and processing of relative clauses. In E. Kidd (Ed.), The acquisition of relative clauses. Processing, typology and function (pp. 39-60). Amsterdam: Benjamins.

    Abstract

    Relative clause processing depends on the grammatical role of the head noun in the subordinate clause. This has traditionally been explained in terms of cognitive limitations. We suggest that structure-related processing differences arise from differences in experience with these structures. We present a connectionist model which learns to produce utterances with relative clauses from exposure to message-sentence pairs. The model shows how various factors such as frequent subsequences, structural variations, and meaning conspire to create differences in the processing of these structures. The predictions of this learning-based account have been confirmed in behavioral studies with adults. This work shows that structural regularities that govern relative clause processing can be explained within a usage-based approach to recursion.
  • Hagoort, P. (2011). The binding problem for language, and its consequences for the neurocognition of comprehension. In E. A. Gibson, & N. J. Pearlmutter (Eds.), The processing and acquisition of reference (pp. 403-436). Cambridge, MA: MIT Press.
  • Hagoort, P. (2011). The neuronal infrastructure for unification at multiple levels. In G. Gaskell, & P. Zwitserlood (Eds.), Lexical representation: A multidisciplinary approach (pp. 231-242). Berlin: De Gruyter Mouton.
  • Harbusch, K., & Kempen, G. (2011). Automatic online writing support for L2 learners of German through output monitoring by a natural-language paraphrase generator. In M. Levy, F. Blin, C. Bradin Siskin, & O. Takeuchi (Eds.), WorldCALL: International perspectives on computer-assisted language learning (pp. 128-143). New York: Routledge.

    Abstract

    Students who are learning to write in a foreign language, often want feedback on the grammatical quality of the sentences they produce. The usual NLP approach to this problem is based on parsing student-generated text. Here, we propose a generation-based ap- proach aiming at preventing errors ("scaffolding"). In our ICALL system, the student constructs sentences by composing syntactic trees out of lexically anchored "treelets" via a graphical drag & drop user interface. A natural-language generator computes all possible grammatically well-formed sentences entailed by the student-composed tree. It provides positive feedback if the student-composed tree belongs to the well-formed set, and negative feedback otherwise. If so requested by the student, it can substantiate the positive or negative feedback based on a comparison between the student-composed tree and its own trees (informative feedback on demand). In case of negative feedback, the system refuses to build the structure attempted by the student. Frequently occurring errors are handled in terms of "malrules." The system we describe is a prototype (implemented in JAVA and C++) which can be parameterized with respect to L1 and L2, the size of the lexicon, and the level of detail of the visually presented grammatical structures.
  • Ozyurek, A., & Perniss, P. M. (2011). Event representations in signed languages. In J. Bohnemeyer, & E. Pederson (Eds.), Event representations in language and cognition (pp. 84-107). New York: Cambridge University Press.
  • Petersson, K. M., Forkstam, C., Inácio, F., Bramão, I., Araújo, S., Souza, A. C., Silva, S., & Castro, S. L. (2011). Artificial language learning. In A. Trevisan, & V. Wannmacher Pereira (Eds.), Alfabeltização e cognição (pp. 71-90). Porto Alegre, Brasil: Edipucrs.

    Abstract

    Neste artigo fazemos uma revisão breve de investigações actuais com técnicas comportamentais e de neuroimagem funcional sobre a aprendizagem de uma linguagem artificial em crianças e adultos. Na secção final, discutimos uma possível associação entre dislexia e aprendizagem implícita. Resultados recentes sugerem que a presença de um défice ao nível da aprendizagem implícita pode contribuir para as dificuldades de leitura e escrita observadas em indivíduos disléxicos.
  • Reis, A., Faísca, L., & Petersson, K. M. (2011). Literacia: Modelo para o estudo dos efeitos de uma aprendizagem específica na cognição e nas suas bases cerebrais. In A. Trevisan, J. J. Mouriño Mosquera, & V. Wannmacher Pereira (Eds.), Alfabeltização e cognição (pp. 23-36). Porto Alegro, Brasil: Edipucrs.

    Abstract

    A aquisição de competências de leitura e de escrita pode ser vista como um processo formal de transmissão cultural, onde interagem factores neurobiológicos e culturais. O treino sistemático exigido pela aprendizagem da leitura e da escrita poderá produzir mudanças quantitativas e qualitativas tanto a nível cognitivo como ao nível da organização do cérebro. Estudar sujeitos iletrados e letrados representa, assim, uma oportunidade para investigar efeitos de uma aprendizagem específica no desenvolvimento cognitivo e suas bases cerebrais. Neste trabalho, revemos um conjunto de investigações comportamentais e com métodos de imagem cerebral que indicam que a literacia tem um impacto nas nossas funções cognitivas e na organização cerebral. Mais especificamente, discutiremos diferenças entre letrados e iletrados para domínios cognitivos verbais e não-verbais, sugestivas de que a arquitectura cognitiva é formatada, em parte, pela aprendizagem da leitura e da escrita. Os dados de neuroimagem funcionais e estruturais são também indicadores que a aquisição de uma ortografia alfabética interfere nos processos de organização e lateralização das funções cognitivas.
  • Wilkin, K., & Holler, J. (2011). Speakers’ use of ‘action’ and ‘entity’ gestures with definite and indefinite references. In G. Stam, & M. Ishino (Eds.), Integrating gestures: The interdisciplinary nature of gesture (pp. 293-308). Amsterdam: John Benjamins.

    Abstract

    Common ground is an essential prerequisite for coordination in social interaction, including language use. When referring back to a referent in discourse, this referent is ‘given information’ and therefore in the interactants’ common ground. When a referent is being referred to for the first time, a speaker introduces ‘new information’. The analyses reported here are on gestures that accompany such references when they include definite and indefinite grammatical determiners. The main finding from these analyses is that referents referred to by definite and indefinite articles were equally often accompanied by gesture, but speakers tended to accompany definite references with gestures focusing on action information and indefinite references with gestures focusing on entity information. The findings suggest that speakers use speech and gesture together to design utterances appropriate for speakers with whom they share common ground.

    Files private

    Request files
  • Casasanto, D. (2008). Who's afraid of the big bad Whorf? Crosslinguistic differences in temporal language and thought. In P. Indefrey, & M. Gullberg (Eds.), Time to speak: Cognitive and neural prerequisites for time in language (pp. 63-79). Oxford: Wiley.

    Abstract

    The idea that language shapes the way we think, often associated with Benjamin Whorf, has long been decried as not only wrong but also fundamentally wrong-headed. Yet, experimental evidence has reopened debate about the extent to which language influences nonlinguistic cognition, particularly in the domain of time. In this article, I will first analyze an influential argument against the Whorfian hypothesis and show that its anti-Whorfian conclusion is in part an artifact of conflating two distinct questions: Do we think in language? and Does language shape thought? Next, I will discuss crosslinguistic differences in spatial metaphors for time and describe experiments that demonstrate corresponding differences in nonlinguistic mental representations. Finally, I will sketch a simple learning mechanism by which some linguistic relativity effects appear to arise. Although people may not think in language, speakers of different languages develop distinctive conceptual repertoires as a consequence of ordinary and presumably universal neural and cognitive processes.
  • Hagoort, P., Ramsey, N. F., & Jensen, O. (2008). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (Eds.), Het brein te kijk: Verkenning van de cognitieve neurowetenschap (pp. 41-75). Amsterdam: Harcourt Assessment.
  • Hagoort, P. (2008). Über Broca, Gehirn und Bindung. In Jahrbuch 2008: Tätigkeitsberichte der Institute. München: Generalverwaltung der Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/306524/forschungsSchwerpunkt1?c=166434.

    Abstract

    Beim Sprechen und beim Sprachverstehen findet man die Wortbedeutung im Gedächtnis auf und kombiniert sie zu größeren Einheiten (Unifikation). Solche Unifikations-Operationen laufen auf unterschiedlichen Ebenen der Sprachverarbeitung ab. In diesem Beitrag wird ein Rahmen vorgeschlagen, in dem psycholinguistische Modelle mit neurobiologischer Sprachbetrachtung in Verbindung gebracht werden. Diesem Vorschlag zufolge spielt der linke inferiore frontale Gyrus (LIFG) eine bedeutende Rolle bei der Unifi kation
  • Perniss, P. M., & Ozyurek, A. (2008). Representations of action, motion and location in sign space: A comparison of German (DGS) and Turkish (TID) sign language narratives. In J. Quer (Ed.), Signs of the time: Selected papers from TISLR 8 (pp. 353-376). Seedorf: Signum Press.
  • Senghas, A., Kita, S., & Ozyurek, A. (2008). Children creating core properties of language: Evidence from an emerging sign language in Nicaragua. In K. A. Lindgren, D. DeLuca, & D. J. Napoli (Eds.), Signs and Voices: Deaf Culture, Identity, Language, and Arts. Washington, DC: Gallaudet University Press.

Share this page