Publications

Displaying 1 - 100 of 131
  • Aldosimani, M., Verdonschot, R. G., Iwamoto, Y., Nakazawa, M., Mallya, S. M., Kakimoto, N., Toyosawa, S., Kreiborg, S., & Murakami, S. (2022). Prognostic factors for lymph node metastasis from upper gingival carcinomas. Oral Radiology, 38(3), 389-396. doi:10.1007/s11282-021-00568-w.

    Abstract

    This study sought to identify tumor characteristics that associate with regional lymph node metastases in squamous cell carcinomas originating in the upper gingiva.
  • Bocanegra, B. R., Poletiek, F. H., & Zwaan, R. A. (2022). Language concatenates perceptual features into representations during comprehension. Journal of Memory and Language, 127: 104355. doi:10.1016/j.jml.2022.104355.

    Abstract

    Although many studies have investigated the activation of perceptual representations during language comprehension, to our knowledge only one previous study has directly tested how perceptual features are combined into representations during comprehension. In their classic study, Potter and Faulconer [(1979). Understanding noun phrases. Journal of Verbal Learning and Verbal Behavior, 18, 509–521.] investigated the perceptual representation of adjective-noun combinations. However, their non-orthogonal design did not allow the differentiation between conjunctive vs. disjunctive representations. Using randomized orthogonal designs, we observe evidence for disjunctive perceptual representations when participants represent feature combinations simultaneously (in several experiments; N = 469), and we observe evidence for conjunctive perceptual representations when participants represent feature combinations sequentially (In several experiments; N = 628). Our findings show that the generation of conjunctive representations during comprehension depends on the concatenation of linguistic cues, and thus suggest the construction of elaborate perceptual representations may critically depend on language.
  • Carota, F., Schoffelen, J.-M., Oostenveld, R., & Indefrey, P. (2022). The time course of language production as revealed by pattern classification of MEG sensor data. The Journal of Neuroscience, 42(29), 5745-5754. doi:10.1523/JNEUROSCI.1923-21.2022.

    Abstract

    Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production
  • Carter, G., & Nieuwland, M. S. (2022). Predicting definite and indefinite referents during discourse comprehension: Evidence from event‐related potentials. Cognitive Science, 46(2): e13092. doi:10.1111/cogs.13092.

    Abstract

    Linguistic predictions may be generated from and evaluated against a representation of events and referents described in the discourse. Compatible with this idea, recent work shows that predictions about novel noun phrases include their definiteness. In the current follow-up study, we ask whether people engage similar prediction-related processes for definite and indefinite referents. This question is relevant for linguistic theories that imply a processing difference between definite and indefinite noun phrases, typically because definiteness is thought to require a uniquely identifiable referent in the discourse. We addressed this question in an event-related potential (ERP) study (N = 48) with preregistration of data acquisition, preprocessing, and Bayesian analysis. Participants read Dutch mini-stories with a definite or indefinite novel noun phrase (e.g., “het/een huis,” the/a house), wherein (in)definiteness of the article was either expected or unexpected and the noun was always strongly expected. Unexpected articles elicited enhanced N400s, but unexpectedly indefinite articles also elicited a positive ERP effect at frontal channels compared to expectedly indefinite articles. We tentatively link this effect to an antiuniqueness violation, which may force people to introduce a new referent over and above the already anticipated one. Interestingly, expectedly definite nouns elicited larger N400s than unexpectedly definite nouns (replicating a previous surprising finding) and indefinite nouns. Although the exact nature of these noun effects remains unknown, expectedly definite nouns may have triggered the strongest semantic activation because they alone refer to specific and concrete referents. In sum, results from both the articles and nouns clearly demonstrate that definiteness marking has a rapid effect on processing, counter to recent claims regarding definiteness processing.
  • Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.

    Abstract

    It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language.
  • Coopmans, C. W., De Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology of Language, 3(3), 386-412. doi:10.1162/nol_a_00070.

    Abstract

    Recent research has established that cortical activity “tracks” the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.

    Additional information

    supplementary information
  • Coopmans, C. W., & Cohn, N. (2022). An electrophysiological investigation of co-referential processes in visual narrative comprehension. Neuropsychologia, 172: 108253. doi:10.1016/j.neuropsychologia.2022.108253.

    Abstract

    Visual narratives make use of various means to convey referential and co-referential meaning, so comprehenders
    must recognize that different depictions across sequential images represent the same character(s). In this study,
    we investigated how the order in which different types of panels in visual sequences are presented affects how
    the unfolding narrative is comprehended. Participants viewed short comic strips while their electroencephalo-
    gram (EEG) was recorded. We analyzed evoked and induced EEG activity elicited by both full panels (showing a
    full character) and refiner panels (showing only a zoom of that full panel), and took into account whether they
    preceded or followed the panel to which they were co-referentially related (i.e., were cataphoric or anaphoric).
    We found that full panels elicited both larger N300 amplitude and increased gamma-band power compared to
    refiner panels. Anaphoric panels elicited a sustained negativity compared to cataphoric panels, which appeared
    to be sensitive to the referential status of the anaphoric panel. In the time-frequency domain, anaphoric panels
    elicited reduced 8–12 Hz alpha power and increased 45–65 Hz gamma-band power compared to cataphoric
    panels. These findings are consistent with models in which the processes involved in visual narrative compre-
    hension partially overlap with those in language comprehension.
  • Corps, R. E., Knudsen, B., & Meyer, A. S. (2022). Overrated gaps: Inter-speaker gaps provide limited information about the timing of turns in conversation. Cognition, 223: 105037. doi:10.1016/j.cognition.2022.105037.

    Abstract

    Corpus analyses have shown that turn-taking in conversation is much faster than laboratory studies of speech planning would predict. To explain fast turn-taking, Levinson and Torreira (2015) proposed that speakers are highly proactive: They begin to plan a response to their interlocutor's turn as soon as they have understood its gist, and launch this planned response when the turn-end is imminent. Thus, fast turn-taking is possible because speakers use the time while their partner is talking to plan their own utterance. In the present study, we asked how much time upcoming speakers actually have to plan their utterances. Following earlier psycholinguistic work, we used transcripts of spoken conversations in Dutch, German, and English. These transcripts consisted of segments, which are continuous stretches of speech by one speaker. In the psycholinguistic and phonetic literature, such segments have often been used as proxies for turns. We found that in all three corpora, large proportions of the segments comprised of only one or two words, which on our estimate does not give the next speaker enough time to fully plan a response. Further analyses showed that speakers indeed often did not respond to the immediately preceding segment of their partner, but continued an earlier segment of their own. More generally, our findings suggest that speech segments derived from transcribed corpora do not necessarily correspond to turns, and the gaps between speech segments therefore only provide limited information about the planning and timing of turns.
  • Dai, B., McQueen, J. M., Terporten, R., Hagoort, P., & Kösem, A. (2022). Distracting Linguistic Information Impairs Neural Tracking of Attended Speech. Current Research in Neurobiology, 3: 100043. doi:10.1016/j.crneur.2022.100043.

    Abstract

    Listening to speech is difficult in noisy environments, and is even harder when the interfering noise consists of intelligible speech as compared to unintelligible sounds. This suggests that the competing linguistic information interferes with the neural processing of target speech. Interference could either arise from a degradation of the neural representation of the target speech, or from increased representation of distracting speech that enters in competition with the target speech. We tested these alternative hypotheses using magnetoencephalography (MEG) while participants listened to a target clear speech in the presence of distracting noise-vocoded speech. Crucially, the distractors were initially unintelligible but became more intelligible after a short training session. Results showed that the comprehension of the target speech was poorer after training than before training. The neural tracking of target speech in the delta range (1–4 Hz) reduced in strength in the presence of a more intelligible distractor. In contrast, the neural tracking of distracting signals was not significantly modulated by intelligibility. These results suggest that the presence of distracting speech signals degrades the linguistic representation of target speech carried by delta oscillations.
  • Dijkstra, T., Peeters, D., Hieselaar, W., & van Geffen, A. (2022). Orthographic and semantic priming effects in neighbour cognates: Experiments and simulations. Bilingualism: Language and Cognition, 26(2), 371-383. doi:10.1017/S1366728922000591.

    Abstract

    To investigate how orthography and semantics interact during bilingual visual word recognition, Dutch–English bilinguals made lexical decisions in two masked priming experiments. Dutch primes and English targets were presented that were either neighbour cognates (boek – BOOK), noncognate translations (kooi – CAGE), orthographically related neighbours (neus – NEWS), or unrelated words (huid - COAT). Prime durations of 50 ms (Experiment 1) and 83 ms (Experiment 2) led to similar result patterns. Both experiments reported a large cognate facilitation effect, a smaller facilitatory noncognate translation effect, and the absence of inhibitory orthographic neighbour effects. These results indicate that cognate facilitation is in large part due to orthographic-semantic resonance. Priming results for each condition were simulated well (all r's >.50) by Multilink+, a recent computational model for word retrieval. Limitations to the role of lateral inhibition in bilingual word recognition are discussed.
  • Drijvers, L., & Holler, J. (2022). Face-to-face spatial orientation fine-tunes the brain for neurocognitive processing in conversation. iScience, 25(11): 105413. doi:10.1016/j.isci.2022.105413.

    Abstract

    We here demonstrate that face-to-face spatial orientation induces a special ‘social mode’ for neurocognitive processing during conversation, even in the absence of visibility. Participants conversed face-to-face, face-to-face but visually occluded, and back-to-back to tease apart effects caused by seeing visual communicative signals and by spatial orientation. Using dual-EEG, we found that 1) listeners’ brains engaged more strongly while conversing in face-to-face than back-to-back, irrespective of the visibility of communicative signals, 2) listeners attended to speech more strongly in a back-to-back compared to a face-to-face spatial orientation without visibility; visual signals further reduced the attention needed; 3) the brains of interlocutors were more in sync in a face-to-face compared to a back-to-back spatial orientation, even when they could not see each other; visual signals further enhanced this pattern. Communicating in face-to-face spatial orientation is thus sufficient to induce a special ‘social mode’ which fine-tunes the brain for neurocognitive processing in conversation.
  • Eekhof, L. S., Van Krieken, K., & Willems, R. M. (2022). Reading about minds: The social-cognitive potential of narratives. Psychonomic Bulletin & Review, 29, 1703-1718. doi:10.3758/s13423-022-02079-z.

    Abstract

    It is often argued that narratives improve social cognition, either by appealing to social-cognitive abilities as we engage with the story world and its characters, or by conveying social knowledge. Empirical studies have found support for both a correlational and a causal link between exposure to (literary, fictional) narratives and social cognition. However, a series of failed replications has cast doubt on the robustness of these claims. Here, we review the existing empirical literature and identify open questions and challenges. An important conclusion of the review is that previous research has given too little consideration to the diversity of narratives, readers, and social-cognitive processes involved in the social-cognitive potential of narratives. We therefore establish a research agenda, proposing that future research should focus on (1) the specific text characteristics that drive the social-cognitive potential of narratives, (2) the individual differences between readers with respect to their sensitivity to this potential, and (3) the various aspects of social cognition that are potentially affected by reading narratives. Our recommendations can guide the design of future studies that will help us understand how, for whom, and in what respect exposure to narratives can advantage social cognition.
  • Ferrari, A., Richter, D., & De Lange, F. (2022). Updating contextual sensory expectations for adaptive behaviour. The Journal of Neuroscience, 42(47), 8855-8869. doi:10.1523/JNEUROSCI.1107-22.2022.

    Abstract

    The brain has the extraordinary capacity to construct predictive models of the environment by internalizing statistical regularities in the sensory inputs. The resulting sensory expectations shape how we perceive and react to the world; at the neural level, this relates to decreased neural responses to expected than unexpected stimuli (‘expectation suppression’). Crucially, expectations may need revision as context changes. However, existing research has often neglected this issue. Further, it is unclear whether contextual revisions apply selectively to expectations relevant to the task at hand, hence serving adaptive behaviour. The present fMRI study examined how contextual visual expectations spread throughout the cortical hierarchy as participants update their beliefs. We created a volatile environment with two state spaces presented over separate contexts and controlled by an independent contextualizing signal. Participants attended a training session before scanning to learn contextual temporal associations among pairs of object images. The fMRI experiment then tested for the emergence of contextual expectation suppression in two separate tasks, respectively with task-relevant and task-irrelevant expectations. Behavioural and neural effects of contextual expectation emerged progressively across the cortical hierarchy as participants attuned themselves to the context: expectation suppression appeared first in the insula, inferior frontal gyrus and posterior parietal cortex, followed by the ventral visual stream, up to early visual cortex. This applied selectively to task-relevant expectations. Taken together, the present results suggest that an insular and frontoparietal executive control network may guide the flexible deployment of contextual sensory expectations for adaptive behaviour in our complex and dynamic world.
  • Gao, Y., Meng, X., Bai, Z., Liu, X., Zhang, M., Li, H., Ding, G., Liu, L., & Booth, J. R. (2022). Left and right arcuate fasciculi are uniquely related to word reading skills in Chinese-English bilingual children. Neurobiology of Language, 3(1), 109-131. doi:10.1162/nol_a_00051.

    Abstract

    Whether reading in different writing systems recruits language-unique or language-universal neural processes is a long-standing debate. Many studies have shown the left arcuate fasciculus (AF) to be involved in phonological and reading processes. In contrast, little is known about the role of the right AF in reading, but some have suggested that it may play a role in visual spatial aspects of reading or the prosodic components of language. The right AF may be more important for reading in Chinese due to its logographic and tonal properties, but this hypothesis has yet to be tested. We recruited a group of Chinese-English bilingual children (8.2 to 12.0 years old) to explore the common and unique relation of reading skill in English and Chinese to fractional anisotropy (FA) in the bilateral AF. We found that both English and Chinese reading skills were positively correlated with FA in the rostral part of the left AF-direct segment. Additionally, English reading skill was positively correlated with FA in the caudal part of the left AF-direct segment, which was also positively correlated with phonological awareness. In contrast, Chinese reading skill was positively correlated with FA in certain segments of the right AF, which was positively correlated with visual spatial ability, but not tone discrimination ability. Our results suggest that there are language universal substrates of reading across languages, but that certain left AF nodes support phonological mechanisms important for reading in English, whereas certain right AF nodes support visual spatial mechanisms important for reading in Chinese.

    Additional information

    supplementary materials
  • Giglio, L., Ostarek, M., Weber, K., & Hagoort, P. (2022). Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cerebral Cortex, 32(7), 1405-1418. doi:10.1093/cercor/bhab287.

    Abstract

    The neurobiology of sentence production has been largely understudied compared to the neurobiology of sentence comprehension, due to difficulties with experimental control and motion-related artifacts in neuroimaging. We studied the neural response to constituents of increasing size and specifically focused on the similarities and differences in the production and comprehension of the same stimuli. Participants had to either produce or listen to stimuli in a gradient of constituent size based on a visual prompt. Larger constituent sizes engaged the left inferior frontal gyrus (LIFG) and middle temporal gyrus (LMTG) extending to inferior parietal areas in both production and comprehension, confirming that the neural resources for syntactic encoding and decoding are largely overlapping. An ROI analysis in LIFG and LMTG also showed that production elicited larger responses to constituent size than comprehension and that the LMTG was more engaged in comprehension than production, while the LIFG was more engaged in production than comprehension. Finally, increasing constituent size was characterized by later BOLD peaks in comprehension but earlier peaks in production. These results show that syntactic encoding and parsing engage overlapping areas, but there are asymmetries in the engagement of the language network due to the specific requirements of production and comprehension.

    Additional information

    supplementary material
  • Gussenhoven, C., Lu, Y.-A., Lee-Kim, S.-I., Liu, C., Rahmani, H., Riad, T., & Zora, H. (2022). The sequence recall task and lexicality of tone: Exploring tone “deafness”. Frontiers in Psychology, 13: 902569. doi:10.3389/fpsyg.2022.902569.

    Abstract

    Many perception and processing effects of the lexical status of tone have been found in behavioral, psycholinguistic, and neuroscientific research, often pitting varieties of tonal Chinese against non-tonal Germanic languages. While the linguistic and cognitive evidence for lexical tone is therefore beyond dispute, the word prosodic systems of many languages continue to escape the categorizations of typologists. One controversy concerns the existence of a typological class of “pitch accent languages,” another the underlying phonological nature of surface tone contrasts, which in some cases have been claimed to be metrical rather than tonal. We address the question whether the Sequence Recall Task (SRT), which has been shown to discriminate between languages with and without word stress, can distinguish languages with and without lexical tone. Using participants from non-tonal Indonesian, semi-tonal Swedish, and two varieties of tonal Mandarin, we ran SRTs with monosyllabic tonal contrasts to test the hypothesis that high performance in a tonal SRT indicates the lexical status of tone. An additional question concerned the extent to which accuracy scores depended on phonological and phonetic properties of a language’s tone system, like its complexity, the existence of an experimental contrast in a language’s phonology, and the phonetic salience of a contrast. The results suggest that a tonal SRT is not likely to discriminate between tonal and non-tonal languages within a typologically varied group, because of the effects of specific properties of their tone systems. Future research should therefore address the first hypothesis with participants from otherwise similar tonal and non-tonal varieties of the same language, where results from a tonal SRT may make a useful contribution to the typological debate on word prosody.

    Additional information

    also published as book chapter (2023)
  • Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., & De Lange, F. P. (2022). A hierarchy of linguistic predictions during natural language comprehension. Proceedings of the National Academy of Sciences of the United States of America, 119(32): e2201968119. doi:10.1073/pnas.2201968119.

    Abstract

    Understanding spoken language requires transforming ambiguous acoustic streams into a hierarchy of representations, from phonemes to meaning. It has been suggested that the brain uses prediction to guide the interpretation of incoming input. However, the role of prediction in language processing remains disputed, with disagreement about both the ubiquity and representational nature of predictions. Here, we address both issues by analyzing brain recordings of participants listening to audiobooks, and using a deep neural network (GPT-2) to precisely quantify contextual predictions. First, we establish that brain responses to words are modulated by ubiquitous predictions. Next, we disentangle model-based predictions into distinct dimensions, revealing dissociable neural signatures of predictions about syntactic category (parts of speech), phonemes, and semantics. Finally, we show that high-level (word) predictions inform low-level (phoneme) predictions, supporting hierarchical predictive processing. Together, these results underscore the ubiquity of prediction in language processing, showing that the brain spontaneously predicts upcoming language at multiple levels of abstraction.

    Additional information

    supporting information
  • Hervais-Adelman, A., Kumar, U., Mishra, R., Tripathi, V., Guleria, A., Singh, J. P., & Huettig, F. (2022). How does literacy affect speech processing? Not by enhancing cortical responses to speech, but by promoting connectivity of acoustic-phonetic and graphomotor cortices. Journal of Neuroscience, 42(47), 8826-8841. doi:10.1523/JNEUROSCI.1125-21.2022.

    Abstract

    Previous research suggests that literacy, specifically learning alphabetic letter-to-phoneme mappings, modifies online speech processing, and enhances brain responses, as indexed by the blood-oxygenation level dependent signal (BOLD), to speech in auditory areas associated with phonological processing (Dehaene et al., 2010). However, alphabets are not the only orthographic systems in use in the world, and hundreds of millions of individuals speak languages that are not written using alphabets. In order to make claims that literacy per se has broad and general consequences for brain responses to speech, one must seek confirmatory evidence from non-alphabetic literacy. To this end, we conducted a longitudinal fMRI study in India probing the effect of literacy in Devanagari, an abugida, on functional connectivity and cerebral responses to speech in 91 variously literate Hindi-speaking male and female human participants. Twenty-two completely illiterate participants underwent six months of reading and writing training. Devanagari literacy increases functional connectivity between acoustic-phonetic and graphomotor brain areas, but we find no evidence that literacy changes brain responses to speech, either in cross-sectional or longitudinal analyses. These findings shows that a dramatic reconfiguration of the neurofunctional substrates of online speech processing may not be a universal result of learning to read, and suggest that the influence of writing on speech processing should also be investigated.
  • Holler, J., Drijvers, L., Rafiee, A., & Majid, A. (2022). Embodied space-pitch associations are shaped by language. Cognitive Science, 46(2): e13083. doi:10.1111/cogs.13083.

    Abstract

    Height-pitch associations are claimed to be universal and independent of language, but this claim remains controversial. The present study sheds new light on this debate with a multimodal analysis of individual sound and melody descriptions obtained in an interactive communication paradigm with speakers of Dutch and Farsi. The findings reveal that, in contrast to Dutch speakers, Farsi speakers do not use a height-pitch metaphor consistently in speech. Both Dutch and Farsi speakers’ co-speech gestures did reveal a mapping of higher pitches to higher space and lower pitches to lower space, and this gesture space-pitch mapping tended to co-occur with corresponding spatial words (high-low). However, this mapping was much weaker in Farsi speakers than Dutch speakers. This suggests that cross-linguistic differences shape the conceptualization of pitch and further calls into question the universality of height-pitch associations.

    Additional information

    supporting information
  • Huizeling, E., Arana, S., Hagoort, P., & Schoffelen, J.-M. (2022). Lexical frequency and sentence context influence the brain’s response to single words. Neurobiology of Language, 3(1), 149-179. doi:10.1162/nol_a_00054.

    Abstract

    Typical adults read remarkably quickly. Such fast reading is facilitated by brain processes that are sensitive to both word frequency and contextual constraints. It is debated as to whether these attributes have additive or interactive effects on language processing in the brain. We investigated this issue by analysing existing magnetoencephalography data from 99 participants reading intact and scrambled sentences. Using a cross-validated model comparison scheme, we found that lexical frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, irrespective of sentential context. In contrast, index (ordinal word position) was more strongly encoded in sentence words, in left front-temporal areas. This confirms that frequency influences word processing independently of predictability, and that contextual constraints affect word-by-word brain responses. With a conservative multiple comparisons correction, only the interaction between lexical frequency and surprisal survived, in anterior temporal and frontal cortex, and not between lexical frequency and entropy, nor between lexical frequency and index. However, interestingly, the uncorrected index*frequency interaction revealed an effect in left frontal and temporal cortex that reversed in time and space for intact compared to scrambled sentences. Finally, we provide evidence to suggest that, in sentences, lexical frequency and predictability may independently influence early (<150ms) and late stages of word processing, but interact during later stages of word processing (>150-250ms), thus helping to converge previous contradictory eye-tracking and electrophysiological literature. Current neuro-cognitive models of reading would benefit from accounting for these differing effects of lexical frequency and predictability on different stages of word processing.
  • Huizeling, E., Peeters, D., & Hagoort, P. (2022). Prediction of upcoming speech under fluent and disfluent conditions: Eye tracking evidence from immersive virtual reality. Language, Cognition and Neuroscience, 37(4), 481-508. doi:10.1080/23273798.2021.1994621.

    Abstract

    Traditional experiments indicate that prediction is important for efficient speech processing. In three virtual reality visual world paradigm experiments, we tested whether such findings hold in naturalistic settings (Experiment 1) and provided novel insights into whether disfluencies in speech (repairs/hesitations) inform one’s predictions in rich environments (Experiments 2–3). Experiment 1 supports that listeners predict upcoming speech in naturalistic environments, with higher proportions of anticipatory target fixations in predictable compared to unpredictable trials. In Experiments 2–3, disfluencies reduced anticipatory fixations towards predicted referents, compared to conjunction (Experiment 2) and fluent (Experiment 3) sentences. Unexpectedly, Experiment 2 provided no evidence that participants made new predictions from a repaired verb. Experiment 3 provided novel findings that fixations towards the speaker increase upon hearing a hesitation, supporting current theories of how hesitations influence sentence processing. Together, these findings unpack listeners’ use of visual (objects/speaker) and auditory (speech/disfluencies) information when predicting upcoming words.
  • Lai, V. T., Van Berkum, J. J. A., & Hagoort, P. (2022). Negative affect increases reanalysis of conflicts between discourse context and world knowledge. Frontiers in Communication, 7: 910482. doi:10.3389/fcomm.2022.910482.

    Abstract

    Introduction: Mood is a constant in our daily life and can permeate all levels of cognition. We examined whether and how mood influences the processing of discourse content that is relatively neutral and not loaded with emotion. During discourse processing, readers have to constantly strike a balance between what they know in long term memory and what the current discourse is about. Our general hypothesis is that mood states would affect this balance. We hypothesized that readers in a positive mood would rely more on default world knowledge, whereas readers in a negative mood would be more inclined to analyze the details in the current discourse.

    Methods: Participants were put in a positive and a negative mood via film clips, one week apart. In each session, after mood manipulation, they were presented with sentences in discourse materials. We created sentences such as “With the lights on you can see...” that end with critical words (CWs) “more” or “less”, where general knowledge supports “more”, not “less”. We then embedded each of these sentences in a wider discourse that does/does not support the CWs (a story about driving in the night vs. stargazing). EEG was recorded throughout.

    Results: The results showed that first, mood manipulation was successful in that there was a significant mood difference between sessions. Second, mood did not modulate the N400 effects. Participants in both moods detected outright semantic violations and allowed world knowledge to be overridden by discourse context. Third, mood modulated the LPC (Late Positive Component) effects, distributed in the frontal region. In negative moods, the LPC was sensitive to one-level violation. That is, CWs that were supported by only world knowledge, only discourse, and neither, elicited larger frontal LPCs, in comparison to the condition where CWs were supported by both world knowledge and discourse.

    Discussion: These results suggest that mood does not influence all processes involved in discourse processing. Specifically, mood does not influence lexical-semantic retrieval (N400), but it does influence elaborative processes for sensemaking (P600) during discourse processing. These results advance our understanding of the impact and time course of mood on discourse.

    Additional information

    Table 1.XLSX
  • Levshina, N. (2022). Frequency, informativity and word length: Insights from typologically diverse corpora. Entropy, 24(2): 280. doi:10.3390/e24020280.

    Abstract

    Zipf’s law of abbreviation, which posits a negative correlation between word frequency and length, is one of the most famous and robust cross-linguistic generalizations. At the same time, it has been shown that contextual informativity (average surprisal given previous context) is more strongly correlated with word length, although this tendency is not observed consistently, depending on several methodological choices. The present study examines a more diverse sample of languages than the previous studies (Arabic, Finnish, Hungarian, Indonesian, Russian, Spanish and Turkish). I use large web-based corpora from the Leipzig Corpora Collection to estimate word lengths in UTF-8 characters and in phonemes (for some of the languages), as well as word frequency, informativity given previous word and informativity given next word, applying different methods of bigrams processing. The results show different correlations between word length and the corpus-based measure for different languages. I argue that these differences can be explained by the properties of noun phrases in a language, most importantly, by the order of heads and modifiers and their relative morphological complexity, as well as by orthographic conventions

    Additional information

    datasets
  • Levshina, N., & Hawkins, J. A. (2022). Verb-argument lability and its correlations with other typological parameters. A quantitative corpus-based study. Linguistic Typology at the Crossroads, 2(1), 94-120. doi:10.6092/issn.2785-0943/13861.

    Abstract

    We investigate the correlations between A- and P-lability for verbal arguments with other typological parameters using large, syntactically annotated corpora of online news in 28 languages. To estimate how much lability is observed in a language, we measure associations between Verbs or Verb + Noun combinations and the alternating constructions in which they occur. Our correlational analyses show that high P-lability scores correlate strongly with the following parameters: little or no case marking; weaker associations between lexemes and the grammatical roles A and P; rigid order of Subject and Object; and a high proportion of verb-medial clauses (SVO). Low P-lability correlates with the presence of case marking, stronger associations between nouns and grammatical roles, relatively flexible ordering of Subject and Object, and verb-final order. As for A-lability, it is not correlated with any other parameters. A possible reason is that A-lability is a result of more universal discourse processes, such as deprofiling of the object, and also exhibits numerous lexical and semantic idiosyncrasies. The fact that P-lability is strongly correlated with other parameters can be interpreted as evidence for a more general typology of languages, in which some tend to have highly informative morphosyntactic and lexical cues, whereas others rely predominantly on contextual environment, which is possibly due to fixed word order. We also find that P-lability is more strongly correlated with the other parameters than any of these parameters are with each other, which means that it can be a very useful typological variable.
  • Levshina, N., & Lorenz, D. (2022). Communicative efficiency and the Principle of No Synonymy: Predictability effects and the variation of want to and wanna. Language and Cognition, 14(2), 249-274. doi:10.1017/langcog.2022.7.

    Abstract

    There is ample psycholinguistic evidence that speakers behave efficiently, using shorter and less effortful constructions when the meaning is more predictable, and longer and more effortful ones when it is less predictable. However, the Principle of No Synonymy requires that all formally distinct variants should also be functionally different. The question is how much two related constructions should overlap semantically and pragmatically in order to be used for the purposes of efficient communication. The case study focuses on want to + Infinitive and its reduced variant with wanna, which have different stylistic and sociolinguistic connotations. Bayesian mixed-effects regression modelling based on the spoken part of the British National Corpus reveals a very limited effect of efficiency: predictability increases the chances of the reduced variant only in fast speech. We conclude that efficient use of more and less effortful variants is restricted when two variants are associated with different registers or styles. This paper also pursues a methodological goal regarding missing values in speech corpora. We impute missing data based on the existing values. A comparison of regression models with and without imputed values reveals similar tendencies. This means that imputation is useful for dealing with missing values in corpora.

    Additional information

    supplementary materials
  • Levshina, N. (2022). Semantic maps of causation: New hybrid approaches based on corpora and grammar descriptions. Zeitschrift für Sprachwissenschaft, 41(1), 179-205. doi:10.1515/zfs-2021-2043.

    Abstract

    The present paper discusses connectivity and proximity maps of causative constructions and combines them with different types of typological data. In the first case study, I show how one can create a connectivity map based on a parallel corpus. This allows us to solve many problems, such as incomplete descriptions, inconsistent terminology and the problem of determining the semantic nodes. The second part focuses on proximity maps based on Multidimensional Scaling and compares the most important semantic distinctions, which are inferred from a parallel corpus of film subtitles and from grammar descriptions. The results suggest that corpus-based maps of tokens are more sensitive to cultural and genre-related differences in the prominence of specific causation scenarios than maps based on constructional types, which are described in reference grammars. The grammar-based maps also reveal a less clear structure, which can be due to incomplete semantic descriptions in grammars. Therefore, each approach has its shortcomings, which researchers need to be aware of.
  • Levshina, N. (2022). Corpus-based typology: Applications, challenges and some solutions. Linguistic Typology, 26(1), 129-160. doi:10.1515/lingty-2020-0118.

    Abstract

    Over the last few years, the number of corpora that can be used for language comparison has dramatically increased. The corpora are so diverse in their structure, size and annotation style, that a novice might not know where to start. The present paper charts this new and changing territory, providing a few landmarks, warning signs and safe paths. Although no corpora corpus at present can replace the traditional type of typological data based on language description in reference grammars, they corpora can help with diverse tasks, being particularly well suited for investigating probabilistic and gradient properties of languages and for discovering and interpreting cross-linguistic generalizations based on processing and communicative mechanisms. At the same time, the use of corpora for typological purposes has not only advantages and opportunities, but also numerous challenges. This paper also contains an empirical case study addressing two pertinent problems: the role of text types in language comparison and the problem of the word as a comparative concept.
  • Mak, M., Faber, M., & Willems, R. M. (2022). Different routes to liking: How readers arrive at narrative evaluations. Cognitive Research: Principles and implications, 7: 72. doi:10.1186/s41235-022-00419-0.

    Abstract

    When two people read the same story, they might both end up liking it very much. However, this does not necessarily mean that their reasons for liking it were identical. We therefore ask what factors contribute to “liking” a story, and—most importantly—how people vary in this respect. We found that readers like stories because they find them interesting, amusing, suspenseful and/or beautiful. However, the degree to which these components of appreciation were related to how much readers liked stories differed between individuals. Interestingly, the individual slopes of the relationships between many of the components and liking were (positively or negatively) correlated. This indicated, for instance, that individuals displaying a relatively strong relationship between interest and liking, generally display a relatively weak relationship between sadness and liking. The individual differences in the strengths of the relationships between the components and liking were not related to individual differences in expertize, a characteristic strongly associated with aesthetic appreciation of visual art. Our work illustrates that it is important to take into consideration the fact that individuals differ in how they arrive at their evaluation of literary stories, and that it is possible to quantify these differences in empirical experiments. Our work suggests that future research should be careful about “overfitting” theories of aesthetic appreciation to an “idealized reader,” but rather take into consideration variations across individuals in the reason for liking a particular story.
  • Misersky, J., Peeters, D., & Flecken, M. (2022). The potential of immersive virtual reality for the study of event perception. Frontiers in Virtual Reality, 3: 697934. doi:10.3389/frvir.2022.697934.

    Abstract

    In everyday life, we actively engage in different activities from a first-person perspective. However, experimental psychological research in the field of event perception is often limited to relatively passive, third-person computer-based paradigms. In the present study, we tested the feasibility of using immersive virtual reality in combination with eye tracking with participants in active motion. Behavioral research has shown that speakers of aspectual and non-aspectual languages attend to goals (endpoints) in motion events differently, with speakers of non-aspectual languages showing relatively more attention to goals (endpoint bias). In the current study, native speakers of German (non-aspectual) and English (aspectual) walked on a treadmill across 3-D terrains in VR, while their eye gaze was continuously tracked. Participants encountered landmark objects on the side of the road, and potential endpoint objects at the end of it. Using growth curve analysis to analyze fixation patterns over time, we found no differences in eye gaze behavior between German and English speakers. This absence of cross-linguistic differences was also observed in behavioral tasks with the same participants. Methodologically, based on the quality of the data, we conclude that our dynamic eye-tracking setup can be reliably used to study what people look at while moving through rich and dynamic environments that resemble the real world.
  • Montero-Melis, G., Van Paridon, J., Ostarek, M., & Bylund, E. (2022). No evidence for embodiment: The motor system is not needed to keep action words in working memory. Cortex, 150, 108-125. doi:10.1016/j.cortex.2022.02.006.

    Abstract

    Increasing evidence implicates the sensorimotor systems with high-level cognition, but the extent to which these systems play a functional role remains debated. Using an elegant design, Shebani and Pulvermüller (2013) reported that carrying out a demanding rhythmic task with the hands led to selective impairment of working memory for hand-related words (e.g., clap), while carrying out the same task with the feet led to selective memory impairment for foot-related words (e.g., kick). Such a striking double dissociation is acknowledged even by critics to constitute strong evidence for an embodied account of working memory. Here, we report on an attempt at a direct replication of this important finding. We followed a sequential sampling design and stopped data collection at N=77 (more than five times the original sample size), at which point the evidence for the lack of the critical selective interference effect was very strong (BF01 = 91). This finding constitutes strong evidence against a functional contribution of the motor system to keeping action words in working memory. Our finding fits into the larger emerging picture in the field of embodied cognition that sensorimotor simulations are neither required nor automatic in high-level cognitive processes, but that they may play a role depending on the task. Importantly, we urge researchers to engage in transparent, high-powered, and fully pre-registered experiments like the present one to ensure the field advances on a solid basis.
  • Morey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen, B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell, E., Cook, S. W. and 25 moreMorey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen, B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell, E., Cook, S. W., Davis, J. D., Evers, E., Girard, S., Harter, D., Hartung, F., Herrera, E., Huettig, F., Humphries, S., Juanchich, M., Kühne, K., Lu, S., Lynes, T., Masson, M. E. J., Ostarek, M., Pessers, S., Reglin, R., Steegen, S., Thiessen, E. D., Thomas, L. E., Trott, S., Vandekerckhove, J., Vanpaemel, W., Vlachou, M., Williams, K., & Ziv-Crispel, N. (2022). A pre-registered, multi-lab non-replication of the Action-sentence Compatibility Effect (ACE). Psychonomic Bulletin & Review, 29, 613-626. doi:10.3758/s13423-021-01927-8.

    Abstract

    The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the movement (e.g., toward) matches the direction of the action in the to-be-judged sentence (e.g., Art gave you the pen describes action toward you). We report on a pre- registered, multi-lab replication of one version of the ACE. The results show that none of the 18 labs involved in the study observed a reliable ACE, and that the meta-analytic estimate of the size of the ACE was essentially zero.
  • Murphy, E., Woolnough, O., Rollo, P. S., Roccaforte, Z., Segaert, K., Hagoort, P., & Tandon, N. (2022). Minimal phrase composition revealed by intracranial recordings. The Journal of Neuroscience, 42(15), 3216-3227. doi:10.1523/JNEUROSCI.1575-21.2022.

    Abstract

    The ability to comprehend phrases is an essential integrative property of the brain. Here we evaluate the neural processes that enable the transition from single word processing to a minimal compositional scheme. Previous research has reported conflicting timing effects of composition, and disagreement persists with respect to inferior frontal and posterior temporal contributions. To address these issues, 19 patients (10 male, 19 female) implanted with penetrating depth or surface subdural intracranial electrodes heard auditory recordings of adjective-noun, pseudoword-noun and adjective-pseudoword phrases and judged whether the phrase matched a picture. Stimulus-dependent alterations in broadband gamma activity, low frequency power and phase-locking values across the language-dominant left hemisphere were derived. This revealed a mosaic located on the lower bank of the posterior superior temporal sulcus (pSTS), in which closely neighboring cortical sites displayed exclusive sensitivity to either lexicality or phrase structure, but not both. Distinct timings were found for effects of phrase composition (210–300 ms) and pseudoword processing (approximately 300–700 ms), and these were localized to neighboring electrodes in pSTS. The pars triangularis and temporal pole encoded anticipation of composition in broadband low frequencies, and both regions exhibited greater functional connectivity with pSTS during phrase composition. Our results suggest that the pSTS is a highly specialized region comprised of sparsely interwoven heterogeneous constituents that encodes both lower and higher level linguistic features. This hub in pSTS for minimal phrase processing may form the neural basis for the human-specific computational capacity for forming hierarchically organized linguistic structures.
  • Poort, E. D., & Rodd, J. M. (2022). Cross-lingual priming of cognates and interlingual homographs from L2 to L1. Glossa Psycholinguistics, 1(1): 11. doi:10.5070/G601147.

    Abstract

    Many word forms exist in multiple languages, and can have either the same meaning (cognates) or a different meaning (interlingual homographs). Previous experiments have shown that processing of interlingual homographs in a bilingual’s second language is slowed down by recent experience with these words in the bilingual’s native language, while processing of cognates can be speeded up (Poort et al., 2016; Poort & Rodd, 2019a). The current experiment replicated Poort and Rodd’s (2019a) Experiment 2 but switched the direction of priming: Dutch–English bilinguals (n = 106) made Dutch semantic relatedness judgements to probes related to cognates (n = 50), interlingual homographs (n = 50) and translation equivalents (n = 50) they had seen 15 minutes previously embedded in English sentences. The current experiment is the first to show that a single encounter with an interlingual homograph in one’s second language can also affect subsequent processing in one’s native language. Cross-lingual priming did not affect the cognates. The experiment also extended Poort and Rodd (2019a)’s finding of a large interlingual homograph inhibition effect in a semantic relatedness task in the participants’ L2 to their L1, but again found no evidence for a cognate facilitation effect in a semantic relatedness task. These findings extend the growing literature that emphasises the high level of interaction in a bilingual’s mental lexicon, by demonstrating the influence of L2 experience on the processing of L1 words. Data, scripts, materials and pre-registration available via https://osf.io/2swyg/?view_only=b2ba2e627f6f4eaeac87edab2b59b236.
  • Poulton, V. R., & Nieuwland, M. S. (2022). Can you hear what’s coming? Failure to replicate ERP evidence for phonological prediction. Neurobiology of Language, 3(4), 556 -574. doi:10.1162/nol_a_00078.

    Abstract

    Prediction-based theories of language comprehension assume that listeners predict both the meaning and phonological form of likely upcoming words. In alleged event-related potential (ERP) demonstrations of phonological prediction, prediction-mismatching words elicit a phonological mismatch negativity (PMN), a frontocentral negativity that precedes the centroparietal N400 component. However, classification and replicability of the PMN has proven controversial, with ongoing debate on whether the PMN is a distinct component or merely an early part of the N400. In this electroencephalography (EEG) study, we therefore attempted to replicate the PMN effect and its separability from the N400, using a participant sample size (N = 48) that was more than double that of previous studies. Participants listened to sentences containing either a predictable word or an unpredictable word with/without phonological overlap with the predictable word. Preregistered analyses revealed a widely distributed negative-going ERP in response to unpredictable words in both the early (150–250 ms) and the N400 (300–500 ms) time windows. Bayes factor analysis yielded moderate evidence against a different scalp distribution of the effects in the two time windows. Although our findings do not speak against phonological prediction during sentence comprehension, they do speak against the PMN effect specifically as a marker of phonological prediction mismatch. Instead of an PMN effect, our results demonstrate the early onset of the auditory N400 effect associated with unpredictable words. Our failure to replicate further highlights the risk associated with commonly employed data-contingent analyses (e.g., analyses involving time windows or electrodes that were selected based on visual inspection) and small sample sizes in the cognitive neuroscience of language.
  • Preisig, B., & Hervais-Adelman, A. (2022). The predictive value of individual electric field modeling for transcranial alternating current stimulation induced brain modulation. Frontiers in Cellular Neuroscience, 16: 818703. doi:10.3389/fncel.2022.818703.

    Abstract

    There is considerable individual variability in the reported effectiveness of non-invasive brain stimulation. This variability has often been ascribed to differences in the neuroanatomy and resulting differences in the induced electric field inside the brain. In this study, we addressed the question whether individual differences in the induced electric field can predict the neurophysiological and behavioral consequences of gamma band tACS. In a within-subject experiment, bi-hemispheric gamma band tACS and sham stimulation was applied in alternating blocks to the participants’ superior temporal lobe, while task-evoked auditory brain activity was measured with concurrent functional magnetic resonance imaging (fMRI) and a dichotic listening task. Gamma tACS was applied with different interhemispheric phase lags. In a recent study, we could show that anti-phase tACS (180° interhemispheric phase lag), but not in-phase tACS (0° interhemispheric phase lag), selectively modulates interhemispheric brain connectivity. Using a T1 structural image of each participant’s brain, an individual simulation of the induced electric field was computed. From these simulations, we derived two predictor variables: maximal strength (average of the 10,000 voxels with largest electric field values) and precision of the electric field (spatial correlation between the electric field and the task evoked brain activity during sham stimulation). We found considerable variability in the individual strength and precision of the electric fields. Importantly, the strength of the electric field over the right hemisphere predicted individual differences of tACS induced brain connectivity changes. Moreover, we found in both hemispheres a statistical trend for the effect of electric field strength on tACS induced BOLD signal changes. In contrast, the precision of the electric field did not predict any neurophysiological measure. Further, neither strength, nor precision predicted interhemispheric integration. In conclusion, we found evidence for the dose-response relationship between individual differences in electric fields and tACS induced activity and connectivity changes in concurrent fMRI. However, the fact that this relationship was stronger in the right hemisphere suggests that the relationship between the electric field parameters, neurophysiology, and behavior may be more complex for bi-hemispheric tACS.
  • Preisig, B., Riecke, L., & Hervais-Adelman, A. (2022). Speech sound categorization: The contribution of non-auditory and auditory cortical regions. NeuroImage, 258: 119375. doi:10.1016/j.neuroimage.2022.119375.

    Abstract

    Which processes in the human brain lead to the categorical perception of speech sounds? Investigation of this question is hampered by the fact that categorical speech perception is normally confounded by acoustic differences in the stimulus. By using ambiguous sounds, however, it is possible to dissociate acoustic from perceptual stimulus representations. Twenty-seven normally hearing individuals took part in an fMRI study in which they were presented with an ambiguous syllable (intermediate between /da/ and /ga/) in one ear and with disambiguating acoustic feature (third formant, F3) in the other ear. Multi-voxel pattern searchlight analysis was used to identify brain areas that consistently differentiated between response patterns associated with different syllable reports. By comparing responses to different stimuli with identical syllable reports and identical stimuli with different syllable reports, we disambiguated whether these regions primarily differentiated the acoustics of the stimuli or the syllable report. We found that BOLD activity patterns in left perisylvian regions (STG, SMG), left inferior frontal regions (vMC, IFG, AI), left supplementary motor cortex (SMA/pre-SMA), and right motor and somatosensory regions (M1/S1) represent listeners’ syllable report irrespective of stimulus acoustics. Most of these regions are outside of what is traditionally regarded as auditory or phonological processing areas. Our results indicate that the process of speech sound categorization implicates decision-making mechanisms and auditory-motor transformations.

    Additional information

    figures and table
  • Udden, J., Hulten, A., Schoffelen, J.-M., Lam, N. H. L., Harbusch, K., Van den Bosch, A., Kempen, G., Petersson, K. M., & Hagoort, P. (2022). Supramodal sentence processing in the human brain: fMRI evidence for the influence of syntactic complexity in more than 200 participants. Neurobiology of Language, 3(4), 575-598. doi:10.1162/nol_a_00076.

    Abstract

    This study investigated two questions. One is: To what degree is sentence processing beyond single words independent of the input modality (speech vs. reading)? The second question is: Which parts of the network recruited by both modalities is sensitive to syntactic complexity? These questions were investigated by having more than 200 participants read or listen to well-formed sentences or series of unconnected words. A largely left-hemisphere frontotemporoparietal network was found to be supramodal in nature, i.e., independent of input modality. In addition, the left inferior frontal gyrus (LIFG) and the left posterior middle temporal gyrus (LpMTG) were most clearly associated with left-branching complexity. The left anterior temporal lobe (LaTL) showed the greatest sensitivity to sentences that differed in right-branching complexity. Moreover, activity in LIFG and LpMTG increased from sentence onset to end, in parallel with an increase of the left-branching complexity. While LIFG, bilateral anterior temporal lobe, posterior MTG, and left inferior parietal lobe (LIPL) all contribute to the supramodal unification processes, the results suggest that these regions differ in their respective contributions to syntactic complexity related processing. The consequences of these findings for neurobiological models of language processing are discussed.

    Additional information

    supporting information
  • Verdonschot, R. G., Phu'o'ng, H. T. L., & Tamaoka, K. (2022). Phonological encoding in Vietnamese: An experimental investigation. Quarterly Journal of Experimental Psychology, 75(7), 1355-1366. doi:10.1177/17470218211053244.

    Abstract

    In English, Dutch, and other Germanic languages the initial phonological unit used in word production has been shown to be the phoneme; conversely, others have revealed that in Chinese this is the atonal syllable and in Japanese the mora. The current paper is, to our knowledge, the first to report chronometric data on Vietnamese phonological encoding. Vietnamese, a tonal language, is of interest as, despite its Austroasiatic roots, it has clear similarities with Chinese through extended contact over a prolonged period. Four experiments (i.e., masked priming, phonological Stroop, picture naming with written distractors, picture naming with auditory distractors) have been conducted to investigate Vietnamese phonological encoding. Results show that in all four experiments both onset effects as well as whole syllable effects emerge. This indicates that the fundamental phonological encoding unit during Vietnamese language production is the phoneme despite its apparent similarities to Chinese. This result might have emerged due to tone assignment being a qualitatively different process in Vietnamese compared to Chinese.
  • Vernes, S. C., Devanna, P., Hörpel, S. G., Alvarez van Tussenbroek, I., Firzlaff, U., Hagoort, P., Hiller, M., Hoeksema, N., Hughes, G. M., Lavrichenko, K., Mengede, J., Morales, A. E., & Wiesmann, M. (2022). The pale spear‐nosed bat: A neuromolecular and transgenic model for vocal learning. Annals of the New York Academy of Sciences, 1517, 125-142. doi:10.1111/nyas.14884.

    Abstract

    Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.

    Additional information

    supplementary materials
  • Wanner-Kawahara, J., Yoshihara, M., Lupker, S. J., Verdonschot, R. G., & Nakayama, M. (2022). Morphological priming effects in L2 English verbs for Japanese-English bilinguals. Frontiers in Psychology, 13: 742965. doi:10.3389/fpsyg.2022.742965.

    Abstract

    For native (L1) English readers, masked presentations of past-tense verb primes (e.g., fell and looked) produce faster lexical decision latencies to their present-tense targets (e.g., FALL and LOOK) than orthographically related (e.g., fill and loose) or unrelated (e.g., master and bank) primes. This facilitation observed with morphologically related prime-target pairs (morphological priming) is generally taken as evidence for strong connections based on morphological relationships in the L1 lexicon. It is unclear, however, if similar, morphologically based, connections develop in non-native (L2) lexicons. Several earlier studies with L2 English readers have reported mixed results. The present experiments examine whether past-tense verb primes (both regular and irregular verbs) significantly facilitate target lexical decisions for Japanese-English bilinguals beyond any facilitation provided by prime-target orthographic similarity. Overall, past-tense verb primes facilitated lexical decisions to their present-tense targets relative to both orthographically related and unrelated primes. Replicating previous masked priming experiments with L2 readers, orthographically related primes also facilitated target recognition relative to unrelated primes, confirming that orthographic similarity facilitates L2 target recognition. The additional facilitation from past-tense verb primes beyond that provided by orthographic primes suggests that, in the L2 English lexicon, connections based on morphological relationships develop in a way that is similar to how they develop in the L1 English lexicon even though the connections and processing of lower level, lexical/orthographic information may differ. Further analyses involving L2 proficiency revealed that as L2 proficiency increased, orthographic facilitation was reduced, indicating that there is a decrease in the fuzziness in orthographic representations in the L2 lexicon with increased proficiency.

    Additional information

    supplementary material
  • Wilms, V., Drijvers, L., & Brouwer, S. (2022). The Effects of Iconic Gestures and Babble Language on Word Intelligibility in Sentence Context. Journal of Speech, Language, and Hearing Research, 65, 1822-1838. doi:10.1044/2022\_JSLHR-21-00387.

    Abstract

    Purpose:This study investigated to what extent iconic co-speech gestures helpword intelligibility in sentence context in two different linguistic maskers (nativevs. foreign). It was hypothesized that sentence recognition improves with thepresence of iconic co-speech gestures and with foreign compared to nativebabble.Method:Thirty-two native Dutch participants performed a Dutch word recogni-tion task in context in which they were presented with videos in which anactress uttered short Dutch sentences (e.g.,Ze begint te openen,“She starts toopen”). Participants were presented with a total of six audiovisual conditions: nobackground noise (i.e., clear condition) without gesture, no background noise withgesture, French babble without gesture, French babble with gesture, Dutch bab-ble without gesture, and Dutch babble with gesture; and they were asked to typedown what was said by the Dutch actress. The accurate identification of theaction verbs at the end of the target sentences was measured.Results:The results demonstrated that performance on the task was better inthe gesture compared to the nongesture conditions (i.e., gesture enhancementeffect). In addition, performance was better in French babble than in Dutchbabble.Conclusions:Listeners benefit from iconic co-speech gestures during commu-nication and from foreign background speech compared to native. Theseinsights into multimodal communication may be valuable to everyone whoengages in multimodal communication and especially to a public who oftenworks in public places where competing speech is present in the background.
  • Yang, J., Van den Bosch, A., & Frank, S. L. (2022). Unsupervised text segmentation predicts eye fixations during reading. Frontiers in Artificial Intelligence, 5: 731615. doi:10.3389/frai.2022.731615.

    Abstract

    Words typically form the basis of psycholinguistic and computational linguistic studies about sentence processing. However, recent evidence shows the basic units during reading, i.e., the items in the mental lexicon, are not always words, but could also be sub-word and supra-word units. To recognize these units, human readers require a cognitive mechanism to learn and detect them. In this paper, we assume eye fixations during reading reveal the locations of the cognitive units, and that the cognitive units are analogous with the text units discovered by unsupervised segmentation models. We predict eye fixations by model-segmented units on both English and Dutch text. The results show the model-segmented units predict eye fixations better than word units. This finding suggests that the predictive performance of model-segmented units indicates their plausibility as cognitive units. The Less-is-Better (LiB) model, which finds the units that minimize both long-term and working memory load, offers advantages both in terms of prediction score and efficiency among alternative models. Our results also suggest that modeling the least-effort principle for the management of long-term and working memory can lead to inferring cognitive units. Overall, the study supports the theory that the mental lexicon stores not only words but also smaller and larger units, suggests that fixation locations during reading depend on these units, and shows that unsupervised segmentation models can discover these units.
  • Zora, H., Gussenhoven, C., Tremblay, A., & Liu, F. (2022). Editorial: Crosstalk between intonation and lexical tones: Linguistic, cognitive and neuroscience perspectives. Frontiers in Psychology, 13: 1101499. doi:10.3389/fpsyg.2022.1101499.

    Abstract

    The interplay between categorical and continuous aspects of the speech signal remains central and yet controversial in the fields of phonetics and phonology. The division between phonological abstractions and phonetic variations has been particularly relevant to the unraveling of diverse communicative functions of pitch in the domain of prosody. Pitch influences vocal communication in two major but fundamentally different ways, and lexical and intonational tones exquisitely capture these functions. Lexical tone contrasts convey lexical meanings as well as derivational meanings at the word level and are grammatically encoded as discrete structures. Intonational tones, on the other hand, signal post-lexical meanings at the phrasal level and typically allow gradient pragmatic variations. Since categorical and gradient uses of pitch are ubiquitous and closely intertwined in their physiological and psychological processes, further research is warranted for a more detailed understanding of their structural and functional characterisations. This Research Topic addresses this matter from a wide range of perspectives, including first and second language acquisition, speech production and perception, structural and functional diversity, and working with distinct languages and experimental measures. In the following, we provide a short overview of the contributions submitted to this topic

    Additional information

    also published as book chapter (2023)
  • Acheson, D. J. (2013). Signatures of response conflict monitoring in language production. Procedia - Social and Behavioral Sciences, 94, 214-215. doi:10.1016/j.sbspro.2013.09.106.
  • Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain's language network: Syntactic ambiguity resolution after TMS to the IFG and MTG. Journal of Cognitive Neuroscience, 25(10), 1664-1677. doi:10.1162/jocn_a_00430.

    Abstract

    The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG is involved in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to a control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension.
  • Andics, A., McQueen, J. M., & Petersson, K. M. (2013). Mean-based neural coding of voices. NeuroImage, 79, 351-360. doi:10.1016/j.neuroimage.2013.05.002.

    Abstract

    The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it has been proposed that voice recognition is supported by prototype-centered voice representations, the involvement of these category-selective cortical regions in the neural coding of such "mean voices" has not previously been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic) dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent (i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages, each characterized by neural mechanisms that reference the central tendencies of voice categories.
  • Asaridou, S. S., & McQueen, J. M. (2013). Speech and music shape the listening brain: Evidence for shared domain-general mechanisms. Frontiers in Psychology, 4: 321. doi:10.3389/fpsyg.2013.00321.

    Abstract

    Are there bi-directional influences between speech perception and music perception? An answer to this question is essential for understanding the extent to which the speech and music that we hear are processed by domain-general auditory processes and/or by distinct neural auditory mechanisms. This review summarizes a large body of behavioral and neuroscientific findings which suggest that the musical experience of trained musicians does modulate speech processing, and a sparser set of data, largely on pitch processing, which suggest in addition that linguistic experience, in particular learning a tone language, modulates music processing. Although research has focused mostly on music on speech effects, we argue that both directions of influence need to be studied, and conclude that the picture which thus emerges is one of mutual interaction across domains. In particular, it is not simply that experience with spoken language has some effects on music perception, and vice versa, but that because of shared domain-general subcortical and cortical networks, experiences in both domains influence behavior in both domains.
  • De Boer, M., Toni, I., & Willems, R. M. (2013). What drives successful verbal communication? Frontiers in Human Neuroscience, 7: 622. doi:10.3389/fnhum.2013.00622.

    Abstract

    There is a vast amount of potential mappings between behaviors and intentions in communication: a behavior can indicate a multitude of different intentions, and the same intention can be communicated with a variety of behaviors. Humans routinely solve these many-to-many referential problems when producing utterances for an Addressee. This ability might rely on social cognitive skills, for instance, the ability to manipulate unobservable summary variables to disambiguate ambiguous behavior of other agents (“mentalizing”) and the drive to invest resources into changing and understanding the mental state of other agents (“communicative motivation”). Alternatively, the ambiguities of verbal communicative interactions might be solved by general-purpose cognitive abilities that process cues that are incidentally associated with the communicative interaction. In this study, we assess these possibilities by testing which cognitive traits account for communicative success during a verbal referential task. Cognitive traits were assessed with psychometric scores quantifying motivation, mentalizing abilities, and general-purpose cognitive abilities, taxing abstract visuo-spatial abilities. Communicative abilities of participants were assessed by using an on-line interactive task that required a speaker to verbally convey a concept to an Addressee. The communicative success of the utterances was quantified by measuring how frequently a number of Evaluators would infer the correct concept. Speakers with high motivational and general-purpose cognitive abilities generated utterances that were more easily interpreted. These findings extend to the domain of verbal communication the notion that motivational and cognitive factors influence the human ability to rapidly converge on shared communicative innovations.
  • Campisi, E., & Ozyurek, A. (2013). Iconicity as a communicative strategy: Recipient design in multimodal demonstrations for adults and children. Journal of Pragmatics, 47, 14-27. doi:10.1016/j.pragma.2012.12.007.

    Abstract

    Humans are the only species that uses communication to teach new knowledge to novices, usually to children (Tomasello, 1999 and Csibra and Gergely, 2006). This context of communication can employ “demonstrations” and it takes place with or without the help of objects (Clark, 1996). Previous research has focused on understanding the nature of demonstrations for very young children and with objects involved. However, little is known about the strategies used in demonstrating an action to an older child in comparison to another adult and without the use of objects, i.e., with gestures only. We tested if during demonstration of an action speakers use different degrees of iconicity in gestures for a child compared to an adult. 18 Italian subjects described to a camera how to make coffee imagining the listener as a 12-year-old child, a novice or an expert adult. While speech was found more informative both for the novice adult and for the child compared to the expert adult, the rate of iconic gestures increased and they were more informative and bigger only for the child compared to both of the adult conditions. Iconicity in gestures can be a powerful communicative strategy in teaching new knowledge to children in demonstrations and this is in line with claims that it can be used as a scaffolding device in grounding knowledge in experience (Perniss et al., 2010).
  • Cappuccio, M. L., Chu, M., & Kita, S. (2013). Pointing as an instrumental gesture: Gaze representation through indication. Humana.Mente: Journal of Philosophical Studies, 24, 125-149.

    Abstract

    We call those gestures “instrumental” that can enhance certain thinking processes of an agent by offering him representational models of his actions in a virtual space of imaginary performative possibilities. We argue that pointing is an instrumental gesture in that it represents geometrical information on one’s own gaze direction (i.e., a spatial model for attentional/ocular fixation/orientation), and provides a ritualized template for initiating gaze coordination and joint attention. We counter two possible objections, asserting respectively that the representational content of pointing is not constitutive, but derived from language, and that pointing directly solicits gaze coordination, without representing it. We consider two studies suggesting that attention and spatial perception are actively modified by one’s own pointing activity: the first study shows that pointing gestures help children link sets of objects to their corresponding number words; the second, that adults are faster and more accurate in counting when they point.
  • Cristia, A., Dupoux, E., Hakuno, Y., Lloyd-Fox, S., Schuetze, M., Kivits, J., Bergvelt, T., Van Gelder, M., Filippin, L., Charron, S., & Minagawa-Kawai, Y. (2013). An online database of infant functional Near InfraRed Spectroscopy studies: A community-augmented systematic review. PLoS One, 8(3): e58906. doi:10.1371/journal.pone.0058906.

    Abstract

    Until recently, imaging the infant brain was very challenging. Functional Near InfraRed Spectroscopy (fNIRS) is a promising, relatively novel technique, whose use is rapidly expanding. As an emergent field, it is particularly important to share methodological knowledge to ensure replicable and robust results. In this paper, we present a community-augmented database which will facilitate precisely this exchange. We tabulated articles and theses reporting empirical fNIRS research carried out on infants below three years of age along several methodological variables. The resulting spreadsheet has been uploaded in a format allowing individuals to continue adding new results, and download the most recent version of the table. Thus, this database is ideal to carry out systematic reviews. We illustrate its academic utility by focusing on the factors affecting three key variables: infant attrition, the reliability of oxygenated and deoxygenated responses, and signal-to-noise ratios. We then discuss strengths and weaknesses of the DBIfNIRS, and conclude by suggesting a set of simple guidelines aimed to facilitate methodological convergence through the standardization of reports.
  • Cristia, A. (2013). Input to language: The phonetics of infant-directed speech. Language and Linguistics Compass, 7, 157-170. doi:10.1111/lnc3.12015.

    Abstract

    Over the first year of life, infant perception changes radically as the child learns the phonology of the ambient language from the speech she is exposed to. Since infant-directed speech attracts the child's attention more than other registers, it is necessary to describe that input in order to understand language development, and to address questions of learnability. In this review, evidence from corpora analyses, experimental studies, and observational paradigms is brought together to outline the first comprehensive empirical picture of infant-directed speech and its effects on language acquisition. The ensuing landscape suggests that infant-directed speech provides an emotionally and linguistically rich input to language acquisition

    Additional information

    Cristia_Suppl_Material.xls
  • Cristia, A., Mielke, J., Daland, R., & Peperkamp, S. (2013). Similarity in the generalization of implicitly learned sound patterns. Journal of Laboratory Phonology, 4(2), 259-285.

    Abstract

    A core property of language is the ability to generalize beyond observed examples. In two experiments, we explore how listeners generalize implicitly learned sound patterns to new nonwords and to new sounds, with the goal of shedding light on how similarity affects treatment of potential generalization targets. During the exposure phase, listeners heard nonwords whose onset consonant was restricted to a subset of a natural class (e.g., /d g v z Z/). During the test phase, listeners were presented with new nonwords and asked to judge how frequently they had been presented before; some of the test items began with a consonant from the exposure set (e.g., /d/), and some began with novel consonants with varying relations to the exposure set (e.g., /b/, which is highly similar to all onsets in the training set; /t/, which is highly similar to one of the training onsets; and /p/, which is less similar than the other two). The exposure onset was rated most frequent, indicating that participants encoded onset attestation in the exposure set, and generalized it to new nonwords. Participants also rated novel consonants as somewhat frequent, indicating generalization to onsets that did not occur in the exposure phase. While generalization could be accounted for in terms of featural distance, it was insensitive to natural class structure. Generalization to new sounds was predicted better by models requiring prior linguistic knowledge (either traditional distinctive features or articulatory phonetic information) than by a model based on a linguistically naïve measure of acoustic similarity.
  • Debreslioska, S., Ozyurek, A., Gullberg, M., & Perniss, P. M. (2013). Gestural viewpoint signals referent accessibility. Discourse Processes, 50(7), 431-456. doi:10.1080/0163853x.2013.824286.

    Abstract

    The tracking of entities in discourse is known to be a bimodal phenomenon. Speakers achieve cohesion in speech by alternating between full lexical forms, pronouns, and zero anaphora as they track referents. They also track referents in co-speech gestures. In this study, we explored how viewpoint is deployed in reference tracking, focusing on representations of animate entities in German narrative discourse. We found that gestural viewpoint systematically varies depending on discourse context. Speakers predominantly use character viewpoint in maintained contexts and observer viewpoint in reintroduced contexts. Thus, gestural viewpoint seems to function as a cohesive device in narrative discourse. The findings expand on and provide further evidence for the coordination between speech and gesture on the discourse level that is crucial to understanding the tight link between the two modalities.
  • Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2013). The thickness of musical pitch: Psychophysical evidence for linguistic relativity. Psychological Science, 24, 613-621. doi:10.1177/0956797612457374.

    Abstract

    Do people who speak different languages think differently, even when they are not using language? To find out, we used nonlinguistic psychophysical tasks to compare mental representations of musical pitch in native speakers of Dutch and Farsi. Dutch speakers describe pitches as high (hoog) or low (laag), whereas Farsi speakers describe pitches as thin (na-zok) or thick (koloft). Differences in language were reflected in differences in performance on two pitch-reproduction tasks, even though the tasks used simple, nonlinguistic stimuli and responses. To test whether experience using language influences mental representations of pitch, we trained native Dutch speakers to describe pitch in terms of thickness, as Farsi speakers do. After the training, Dutch speakers’ performance on a nonlinguistic psychophysical task resembled the performance of native Farsi speakers. People who use different linguistic space-pitch metaphors also think about pitch differently. Language can play a causal role in shaping nonlinguistic representations of musical pitch.

    Additional information

    DS_10.1177_0956797612457374.pdf
  • Eisner, F., Melinger, A., & Weber, A. (2013). Constraints on the transfer of perceptual learning in accented speech. Frontiers in Psychology, 4: 148. doi:10.3389/fpsyg.2013.00148.

    Abstract

    The perception of speech sounds can be re-tuned rapidly through a mechanism of lexically-driven learning (Norris et al 2003, Cogn.Psych. 47). Here we investigated this type of learning for English voiced stop consonants which are commonly de-voiced in word final position by Dutch learners of English . Specifically, this study asked under which conditions the change in pre-lexical representation encodes phonological information about the position of the critical sound within a word. After exposure to a Dutch learner’s productions of de-voiced stops in word-final position (but not in any other positions), British English listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with voiceless final stops (e.g., ‘seat’), facilitated recognition of visual targets with voiced final stops (e.g., SEED). This learning generalized to test pairs where the critical contrast was in word-initial position, e.g. auditory primes such as ‘town’ facilitated recognition of visual targets like DOWN (Experiment 1). Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2), and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3). These results suggest that word position can be encoded in the pre-lexical adjustment to the accented phoneme contrast. Lexcially-guided feedback, distributional properties of the input, and long-term representations of accents all appear to modulate the pre-lexical re-tuning of phoneme categories.
  • Erb, J., Henry, M. J., Eisner, F., & Obleser, J. (2013). The brain dynamics of rapid perceptual adaptation to adverse listening conditions. The Journal of Neuroscience, 33, 10688-10697. doi:10.1523/​JNEUROSCI.4596-12.2013.

    Abstract

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an “executive” network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic “language” areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory–language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.
  • Gentner, D., Ozyurek, A., Gurcanli, O., & Goldin-Meadow, S. (2013). Spatial language facilitates spatial cognition: Evidence from children who lack language input. Cognition, 127, 318-330. doi:10.1016/j.cognition.2013.01.003.

    Abstract

    Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not exposed them to sign. Lacking a conventional language, the children used gestures, called homesigns, to communicate. In Study 1, we asked whether homesigners used gesture to convey spatial relations, and found that they did not. In Study 2, we tested a new group of homesigners on a Spatial Mapping Task, and found that they performed significantly worse than hearing Turkish children who were matched to the deaf children on another cognitive task. The absence of spatial language thus went hand-in-hand with poor performance on the nonlinguistic spatial task, pointing to the importance of spatial language in thinking about space.
  • Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J. R., Van Wassenhove, V., Wibral, M., & Schoffelen, J.-M. (2013). Good practice for conducting and reporting MEG research. NeuroImage, 65, 349-363. doi:10.1016/j.neuroimage.2012.10.001.

    Abstract

    Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments as well as methodological developments. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion within the community in order to further enhance the quality and impact of MEG research.
  • Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4: 416. doi:10.3389/fpsyg.2013.00416.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions.
  • Hagoort, P., & Meyer, A. S. (2013). What belongs together goes together: the speaker-hearer perspective. A commentary on MacDonald's PDC account. Frontiers in Psychology, 4: 228. doi:10.3389/fpsyg.2013.00228.

    Abstract

    First paragraph:
    MacDonald (2013) proposes that distributional properties of language and processing biases in language comprehension can to a large extent be attributed to consequences of the language production process. In essence, the account is derived from the principle of least effort that was formulated by Zipf, among others (Zipf, 1949; Levelt, 2013). However, in Zipf's view the outcome of the least effort principle was a compromise between least effort for the speaker and least effort for the listener, whereas MacDonald puts most of the burden on the production process.
  • Holler, J., Turner, K., & Varcianna, T. (2013). It's on the tip of my fingers: Co-speech gestures during lexical retrieval in different social contexts. Language and Cognitive Processes, 28(10), 1509-1518. doi:10.1080/01690965.2012.698289.

    Abstract

    The Lexical Retrieval Hypothesis proposes that gestures function at the level of speech production, aiding in the retrieval of lexical items from the mental lexicon. However, empirical evidence for this account is mixed, and some critics argue that a more likely function of gestures during lexical retrieval is a communicative one. The present study was designed to test these predictions against each other by keeping lexical retrieval difficulty constant while varying social context. Participants' gestures were analysed during tip of the tongue experiences when communicating with a partner face-to-face (FTF), while being separated by a screen, or on their own by speaking into a voice recorder. The results show that participants in the FTF context produced significantly more representational gestures than participants in the solitary condition. This suggests that, even in the specific context of lexical retrieval difficulties, representational gestures appear to play predominantly a communicative role.

    Files private

    Request files
  • Kaltwasser, L., Ries, S., Sommer, W., Knight, R., & Willems, R. M. (2013). Independence of valence and reward in emotional word processing: Electrophysiological evidence. Frontiers in Psychology, 4: 168. doi:10.3389/fpsyg.2013.00168.

    Abstract

    Both emotion and reward are primary modulators of cognition: Emotional word content enhances word processing, and reward expectancy similarly amplifies cognitive processing from the perceptual up to the executive control level. Here, we investigate how these primary regulators of cognition interact. We studied how the anticipation of gain or loss modulates the neural time course (event-related potentials, ERPs) related to processing of emotional words. Participants performed a semantic categorization task on emotional and neutral words, which were preceded by a cue indicating that performance could lead to monetary gain or loss. Emotion-related and reward-related effects occurred in different time windows, did not interact statistically, and showed different topographies. This speaks for an independence of reward expectancy and the processing of emotional word content. Therefore, privileged processing given to emotionally valenced words seems immune to short-term modulation of reward. Models of language comprehension should be able to incorporate effects of reward and emotion on language processing, and the current study argues for an architecture in which reward and emotion do not share a common neurobiological mechanism
  • Kominsky, J. F., & Casasanto, D. (2013). Specific to whose body? Perspective taking and the spatial mapping of valence. Frontiers in Psychology, 4: 266. doi:10.3389/fpsyg.2013.00266.

    Abstract

    People tend to associate the abstract concepts of “good” and “bad” with their fluent and disfluent sides of space, as determined by their natural handedness or by experimental manipulation (Casasanto, 2011). Here we investigated influences of spatial perspective taking on the spatialization of “good” and “bad.” In the first experiment, participants indicated where a schematically drawn cartoon character would locate “good” and “bad” stimuli. Right-handers tended to assign “good” to the right and “bad” to the left side of egocentric space when the character shared their spatial perspective, but when the character was rotated 180° this spatial mapping was reversed: good was assigned to the character’s right side, not the participant’s. The tendency to spatialize valence from the character’s perspective was stronger in the second experiment, when participants were shown a full-featured photograph of the character. In a third experiment, most participants not only spatialized “good” and “bad” from the character’s perspective, they also based their judgments on a salient attribute of the character’s body (an injured hand) rather than their own body. Taking another’s spatial perspective encourages people to compute space-valence mappings using an allocentric frame of reference, based on the fluency with which the other person could perform motor actions with their right or left hand. When people reason from their own spatial perspective, their judgments depend, in part, on the specifics of their bodies; when people reason from someone else’s perspective, their judgments may depend on the specifics of the other person’s body, instead. - See more at: http://journal.frontiersin.org/Journal/10.3389/fpsyg.2013.00266
  • Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.

    Abstract

    The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills.
  • Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.

    Abstract

    In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.

    Additional information

    Kirstensen_Cer_Cor_Suppl_Mat.doc
  • Lai, V. T., & Curran, T. (2013). ERP evidence for conceptual mappings and comparison processes during the comprehension of conventional and novel metaphors. Brain and Language, 127(3), 484-496. doi:10.1016/j.bandl.2013.09.010.

    Abstract

    Cognitive linguists suggest that understanding metaphors requires activation of conceptual mappings between the involved concepts. We tested whether mappings are indeed in use during metaphor comprehension, and what mapping means as a cognitive process with Event-Related Potentials. Participants read literal, conventional metaphorical, novel metaphorical, and anomalous target sentences preceded by primes with related or unrelated mappings. Experiment 1 used sentence-primes to activate related mappings, and Experiment 2 used simile-primes to induce comparison thinking. In the unprimed conditions of both experiments, metaphors elicited N400s more negative than the literals. In Experiment 1, related sentence-primes reduced the metaphor-literal N400 difference in conventional, but not in novel metaphors. In Experiment 2, related simile-primes reduced the metaphor-literal N400 difference in novel, but not clearly in conventional metaphors. We suggest that mapping as a process occurs in metaphors, and the ways in which it can be facilitated by comparison differ between conventional and novel metaphors.

    Additional information

    Lai_2013_supp.docx Erratum figure 1-4
  • Lai, J., & Poletiek, F. H. (2013). How “small” is “starting small” for learning hierarchical centre-embedded structures? Journal of Cognitive Psychology, 25, 423-435. doi:10.1080/20445911.2013.779247.

    Abstract

    Hierarchical centre-embedded structures pose a large difficulty for language learners due to their complexity. A recent artificial grammar learning study (Lai & Poletiek, 2011) demonstrated a starting-small (SS) effect, i.e., staged-input and sufficient exposure to 0-level-of-embedding exemplars were the critical conditions in learning AnBn structures. The current study aims to test: (1) a more sophisticated type of SS (a gradually rather than discretely growing input), and (2) the frequency distribution of the input. The results indicate that SS optimally works under other conditional cues, such as a skewed frequency distribution with simple stimuli being more numerous than complex ones.
  • Lai, V. T., & Boroditsky, L. (2013). The immediate and chronic influence of spatio-temporal metaphors on the mental representations of time in English, Mandarin, and Mandarin-English speakers. Frontiers in Psychology, 4: 142. doi:10.3389/fpsyg.2013.00142.

    Abstract

    In this paper we examine whether experience with spatial metaphors for time has an influence on people’s representation of time. In particular we ask whether spatiotemporal metaphors can have both chronic and immediate effects on temporal thinking. In Study 1, we examine the prevalence of ego-moving representations for time in Mandarin speakers, English speakers, and Mandarin-English (ME) bilinguals. As predicted by observations in linguistic analyses, we find that Mandarin speakers are less likely to take an ego-moving perspective than are English speakers. Further, we find that ME bilinguals tested in English are less likely to take an ego-moving perspective than are English monolinguals (an effect of L1 on meaning-making in L2), and also that ME bilinguals tested in Mandarin are more likely to take an ego-moving perspective than are Mandarin monolinguals (an effect of L2 on meaning-making in L1). These findings demonstrate that habits of metaphor use in one language can influence temporal reasoning in another language, suggesting the metaphors can have a chronic effect on patterns in thought. In Study 2 we test Mandarin speakers using either horizontal or vertical metaphors in the immediate context of the task. We find that Mandarin speakers are more likely to construct front-back representations of time when understanding front-back metaphors, and more likely to construct up-down representations of time when understanding up-down metaphors. These findings demonstrate that spatiotemporal metaphors can also have an immediate influence on temporal reasoning. Taken together, these findings demonstrate that the metaphors we use to talk about time have both immediate and long-term consequences for how we conceptualize and reason about this fundamental domain of experience.
  • Larson-Prior, L., Oostenveld, R., Della Penna, S., Michalareas, G., Prior, F., Babajani-Feremi, A., Schoffelen, J.-M., Marzetti, L., de Pasquale, F., Pompeo, F. D., Stout, J., Woolrich, M., Luo, Q., Bucholz, R., Fries, P., Pizzella, V., Romani, G., Corbetta, M., & Snyder, A. (2013). Adding dynamics to the Human Connectome Project with MEG. NeuroImage, 80, 190-201. doi:10.1016/j.neuroimage.2013.05.056.

    Abstract

    The Human Connectome Project (HCP) seeks to map the structural and functional connections between network elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of information on brain network dynamics and represents one source of functional connectivity data to be provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the resting state and during performance of motor, working memory and language tasks. These data will be available to the general community. Additionally, using the cortical parcellation scheme common to all imaging modalities, the HCP will provide processing pipelines for calculating connection matrices as a function of time and frequency. Together with structural and functional data generated using magnetic resonance imaging methods, these data represent a unique opportunity to investigate brain network connectivity in a large cohort of normal adult human subjects. The analysis pipeline software and the dynamic connectivity matrices that it generates will all be made freely available to the research community.
  • Lüttjohann, A., Schoffelen, J.-M., & Van Luijtelaar, G. (2013). Peri-ictal network dynamics of spike-wave discharges: Phase and spectral characteristics. Experimental Neurology, 239, 235-247. doi:10.1016/j.expneurol.2012.10.021.

    Abstract

    Purpose The brain is a highly interconnected neuronal assembly in which network analyses can greatly enlarge our knowledge on seizure generation. The cortico-thalamo-cortical network is the brain-network of interest in absence epilepsy. Here, network synchronization is assessed in a genetic absence model during 5 second long pre-ictal- > ictal transition periods. Method 16 male WAG/Rij rats were equipped with multiple electrodes targeting layer 4 to 6 of the somatosensory-cortex, rostral and caudal RTN, VPM, anterior-(ATN) and posterior (Po) thalamic nucleus. Local Field Potentials measured during pre-ictal- > ictal transition and during control periods were subjected to time-frequency and pairwise phase consistency analysis. Results Pre-ictally, all channels showed Spike-Wave Discharge (SWD) precursor activity (increases in spectral power), which were earliest and most pronounced in the somatosensory cortex. The caudal RTN decoupled from VPM, Po and cortical layer 4. Strong increases in synchrony were found between cortex and thalamus during SWD. Although increases between cortex and VPM were seen in SWD frequencies and its harmonics, boarder spectral increases (6-48 Hz) were seen between cortex and Po. All thalamic nuclei showed increased phase synchronization with Po but not with VPM. Conclusion Absence seizures are not sudden and unpredictable phenomena: the somatosensory cortex shows highest and earliest precursor activity. The pre-ictal decoupling of the caudal RTN might be a prerequisite of SWD generation. Po nucleus might be the primary thalamic counterpart to the somatosensory-cortex in the generation of the cortico-thalamic-cortical oscillations referred to as SWD.
  • Mazzone, M., & Campisi, E. (2013). Distributed intentionality: A model of intentional behavior in humans. Philosophical Psychology, 26, 267-290. doi:10.1080/09515089.2011.641743.

    Abstract

    Is human behavior, and more specifically linguistic behavior, intentional? Some scholars have proposed that action is driven in a top-down manner by one single intention—i.e.,one single conscious goal. Others have argued that actions are mostly non-intentional,insofar as often the single goal driving an action is not consciously represented. We intend to claim that both alternatives are unsatisfactory; more specifically, we claim that actions are intentional, but intentionality is distributed across complex goal-directed representations of action, rather than concentrated in single intentions driving action in a top-down manner. These complex representations encompass a multiplicity of goals, together with other components which are not goals themselves, and are the result of a largely automatic dynamic of activation; such an automatic processing, however, does not preclude the involvement of conscious attention, shifting from one component to the other of the overall goal-directed representation.

    Files private

    Request files
  • Meyer, A. S., & Hagoort, P. (2013). What does it mean to predict one's own utterances? [Commentary on Pickering & Garrod]. Behavioral and Brain Sciences, 36, 367-368. doi:10.1017/S0140525X12002786.

    Abstract

    Many authors have recently highlighted the importance of prediction for language comprehension. Pickering & Garrod (P&G) are the first to propose a central role for prediction in language production. This is an intriguing idea, but it is not clear what it means for speakers to predict their own utterances, and how prediction during production can be empirically distinguished from production proper.
  • Minagawa-Kawai, Y., Cristia, A., Long, B., Vendelin, I., Hakuno, Y., Dutat, M., Filippin, L., Cabrol, D., & Dupoux, E. (2013). Insights on NIRS sensitivity from a cross-linguistic study on the emergence of phonological grammar. Frontiers in Psychology, 4: 170. doi:10.3389/fpsyg.2013.00170.

    Abstract

    Each language has a unique set of phonemic categories and phonotactic rules which determine permissible sound sequences in that language. Behavioral research demonstrates that one’s native language shapes the perception of both sound categories and sound sequences in adults, and neuroimaging results further indicate that the processing of native phonemes and phonotactics involves a left-dominant perisylvian brain network. Recent work using a novel technique, functional Near InfraRed Spectroscopy (NIRS), has suggested that a left-dominant network becomes evident toward the end of the first year of life as infants process phonemic contrasts. The present research project attempted to assess whether the same pattern would be seen for native phonotactics. We measured brain responses in Japanese- and French-learning infants to two contrasts: Abuna vs. Abna (a phonotactic contrast that is native in French, but not in Japanese) and Abuna vs. Abuuna (a vowel length contrast that is native in Japanese, but not in French). Results did not show a significant response to either contrast in either group, unlike both previous behavioral research on phonotactic processing and NIRS work on phonemic processing. To understand these null results, we performed similar NIRS experiments with Japanese adult participants. These data suggest that the infant null results arise from an interaction of multiple factors, involving the suitability of the experimental paradigm for NIRS measurements and stimulus perceptibility. We discuss the challenges facing this novel technique, particularly focusing on the optimal stimulus presentation which could yield strong enough hemodynamic responses when using the change detection paradigm.
  • Nieuwenhuis, I. L., Folia, V., Forkstam, C., Jensen, O., & Petersson, K. M. (2013). Sleep promotes the extraction of grammatical rules. PLoS One, 8(6): e65046. doi:10.1371/journal.pone.0065046.

    Abstract

    Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep) or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1) the holistic abstraction of the underlying grammar rules and (2) the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired.
  • Peeters, D., Dijkstra, T., & Grainger, J. (2013). The representation and processing of identical cognates by late bilinguals: RT and ERP effects. Journal of Memory and Language, 68, 315-332. doi:10.1016/j.jml.2012.12.003.

    Abstract

    Across the languages of a bilingual, translation equivalents can have the same orthographic form and shared meaning (e.g., TABLE in French and English). How such words, called orthographically identical cognates, are processed and represented in the bilingual brain is not well understood. In the present study, late French–English bilinguals processed such identical cognates and control words in an English lexical decision task. Both behavioral and electrophysiological data were collected. Reaction times to identical cognates were shorter than for non-cognate controls and depended on both English and French frequency. Cognates with a low English frequency showed a larger cognate advantage than those with a high English frequency. In addition, N400 amplitude was found to be sensitive to cognate status and both the English and French frequency of the cognate words. Theoretical consequences for the processing and representation of identical cognates are discussed.
  • Piai, V., Roelofs, A., Acheson, D. J., & Takashima, A. (2013). Attention for speaking: Neural substrates of general and specific mechanisms for monitoring and control. Frontiers in Human Neuroscience, 7: 832. doi:10.3389/fnhum.2013.00832.

    Abstract

    Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.
  • Piai, V., Meyer, L., Schreuder, R., & Bastiaansen, M. C. M. (2013). Sit down and read on: Working memory and long-term memory in particle-verb processing. Brain and Language, 127(2), 296-306. doi:10.1016/j.bandl.2013.09.015.

    Abstract

    Particle verbs (e.g., look up) are lexical items for which particle and verb share a single lexical entry. Using event-related brain potentials, we examined working memory and long-term memory involvement in particle-verb processing. Dutch participants read sentences with head verbs that allow zero, two, or more than five particles to occur downstream. Additionally, sentences were presented for which the encountered particle was semantically plausible, semantically implausible, or forming a non-existing particle verb. An anterior negativity was observed at the verbs that potentially allow for a particle downstream relative to verbs that do not, possibly indexing storage of the verb until the dependency with its particle can be closed. Moreover, a graded N400 was found at the particle (smallest amplitude for plausible particles and largest for particles forming non-existing particle verbs), suggesting that lexical access to a shared lexical entry occurred at two separate time points.
  • Rommers, J., Dijkstra, T., & Bastiaansen, M. C. M. (2013). Context-dependent semantic processing in the human brain: Evidence from idiom comprehension. Journal of Cognitive Neuroscience, 25(5), 762-776. doi:10.1162/jocn_a_00337.

    Abstract

    Language comprehension involves activating word meanings and integrating them with the sentence context. This study examined whether these routines are carried out even when they are theoretically unnecessary, namely in the case of opaque idiomatic expressions, for which the literal word meanings are unrelated to the overall meaning of the expression. Predictable words in sentences were replaced by a semantically related or unrelated word. In literal sentences, this yielded previously established behavioral and electrophysiological signatures of semantic processing: semantic facilitation in lexical decision, a reduced N400 for semantically related relative to unrelated words, and a power increase in the gamma frequency band that was disrupted by semantic violations. However, the same manipulations in idioms yielded none of these effects. Instead, semantic violations elicited a late positivity in idioms. Moreover, gamma band power was lower in correct idioms than in correct literal sentences. It is argued that the brain's semantic expectancy and literal word meaning integration operations can, to some extent, be “switched off” when the context renders them unnecessary. Furthermore, the results lend support to models of idiom comprehension that involve unitary idiom representations.
  • Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.

    Abstract

    Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.

    Additional information

    Segaert_Supplementary_data_2013.docx
  • Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.

    Abstract

    Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects.
  • Stolk, A., Verhagen, L., Schoffelen, J.-M., Oostenveld, R., Blokpoel, M., Hagoort, P., van Rooij, I., & Tonia, I. (2013). Neural mechanisms of communicative innovation. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14574-14579. doi:10.1073/pnas.1303170110.

    Abstract

    Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.
  • Stolk, A., Todorovic, A., Schoffelen, J.-M., & Oostenveld, R. (2013). Online and offline tools for head movement compensation in MEG. NeuroImage, 68, 39-48. doi:10.1016/j.neuroimage.2012.11.047.

    Abstract

    Magnetoencephalography (MEG) is measured above the head, which makes it sensitive to variations of the head position with respect to the sensors. Head movements blur the topography of the neuronal sources of the MEG signal, increase localization errors, and reduce statistical sensitivity. Here we describe two novel and readily applicable methods that compensate for the detrimental effects of head motion on the statistical sensitivity of MEG experiments. First, we introduce an online procedure that continuously monitors head position. Second, we describe an offline analysis method that takes into account the head position time-series. We quantify the performance of these methods in the context of three different experimental settings, involving somatosensory, visual and auditory stimuli, assessing both individual and group-level statistics. The online head localization procedure allowed for optimal repositioning of the subjects over multiple sessions, resulting in a 28% reduction of the variance in dipole position and an improvement of up to 15% in statistical sensitivity. Offline incorporation of the head position time-series into the general linear model resulted in improvements of group-level statistical sensitivity between 15% and 29%. These tools can substantially reduce the influence of head movement within and between sessions, increasing the sensitivity of many cognitive neuroscience experiments.
  • Tsuji, S., & Cristia, A. (2013). Fifty years of infant vowel discrimination research: What have we learned? Journal of the Phonetic Society of Japan, 17(3), 1-11.
  • Van Berkum, J. J. A., De Goede, D., Van Alphen, P. M., Mulder, E. R., & Kerstholt, J. H. (2013). How robust is the language architecture? The case of mood. Frontiers in Psychology, 4: 505. doi:10.3389/fpsyg.2013.00505.

    Abstract

    In neurocognitive research on language, the processing principles of the system at hand are usually assumed to be relatively invariant. However, research on attention, memory, decision-making, and social judgment has shown that mood can substantially modulate how the brain processes information. For example, in a bad mood, people typically have a narrower focus of attention and rely less on heuristics. In the face of such pervasive mood effects elsewhere in the brain, it seems unlikely that language processing would remain untouched. In an EEG experiment, we manipulated the mood of participants just before they read texts that confirmed or disconfirmed verb-based expectations about who would be talked about next (e.g., that “David praised Linda because … ” would continue about Linda, not David), or that respected or violated a syntactic agreement rule (e.g., “The boys turns”). ERPs showed that mood had little effect on syntactic parsing, but did substantially affect referential anticipation: whereas readers anticipated information about a specific person when they were in a good mood, a bad mood completely abolished such anticipation. A behavioral follow-up experiment suggested that a bad mood did not interfere with verb-based expectations per se, but prevented readers from using that information rapidly enough to predict upcoming reference on the fly, as the sentence unfolds. In all, our results reveal that background mood, a rather unobtrusive affective state, selectively changes a crucial aspect of real-time language processing. This observation fits well with other observed interactions between language processing and affect (emotions, preferences, attitudes, mood), and more generally testifies to the importance of studying “cold” cognitive functions in relation to “hot” aspects of the brain.
  • Van Leeuwen, T. M., Hagoort, P., & Händel, B. F. (2013). Real color captures attention and overrides spatial cues in grapheme-color synesthetes but not in controls. Neuropsychologia, 51(10), 1802-1813. doi:10.1016/j.neuropsychologia.2013.06.024.

    Abstract

    Grapheme-color synesthetes perceive color when reading letters or digits. We investigated oscillatory brain signals of synesthetes vs. controls using magnetoencephalography. Brain oscillations specifically in the alpha band (∼10 Hz) have two interesting features: alpha has been linked to inhibitory processes and can act as a marker for attention. The possible role of reduced inhibition as an underlying cause of synesthesia, as well as the precise role of attention in synesthesia is widely discussed. To assess alpha power effects due to synesthesia, synesthetes as well as matched controls viewed synesthesia-inducing graphemes, colored control graphemes, and non-colored control graphemes while brain activity was recorded. Subjects had to report a color change at the end of each trial which allowed us to assess the strength of synesthesia in each synesthete. Since color (synesthetic or real) might allocate attention we also included an attentional cue in our paradigm which could direct covert attention. In controls the attentional cue always caused a lateralization of alpha power with a contralateral decrease and ipsilateral alpha increase over occipital sensors. In synesthetes, however, the influence of the cue was overruled by color: independent of the attentional cue, alpha power decreased contralateral to the color (synesthetic or real). This indicates that in synesthetes color guides attention. This was confirmed by reaction time effects due to color, i.e. faster RTs for the color side independent of the cue. Finally, the stronger the observed color dependent alpha lateralization, the stronger was the manifestation of synesthesia as measured by congruency effects of synesthetic colors on RTs. Behavioral and imaging results indicate that color induces a location-specific, automatic shift of attention towards color in synesthetes but not in controls. We hypothesize that this mechanism can facilitate coupling of grapheme and color during the development of synesthesia.
  • Wagensveld, B., Segers, E., Van Alphen, P. M., & Verhoeven, L. (2013). The role of lexical representations and phonological overlap in rhyme judgments of beginning, intermediate and advanced readers. Learning and Individual Differences, 23, 64-71. doi:10.1016/j.lindif.2012.09.007.

    Abstract

    Studies have shown that prereaders find globally similar non-rhyming pairs (i.e., bell–ball) difficult to judge. Although this effect has been explained as a result of ill-defined lexical representations, others have suggested that it is part of an innate tendency to respond to phonological overlap. In the present study we examined this effect over time. Beginning, intermediate and advanced readers were presented with a rhyme judgment task containing rhyming, phonologically similar, and unrelated non-rhyming pairs. To examine the role of lexical representations, participants were presented with both words and pseudowords. Outcomes showed that pseudoword processing was difficult for children but not for adults. The global similarity effect was present in both children and adults. The findings imply that holistic representations cannot explain the incapacity to ignore similarity relations during rhyming. Instead, the data provide more evidence for the idea that global similarity processing is part of a more fundamental innate phonological processing capacity.
  • Wagensveld, B., Van Alphen, P. M., Segers, E., Hagoort, P., & Verhoeven, L. (2013). The neural correlates of rhyme awareness in preliterate and literate children. Clinical Neurophysiology, 124, 1336-1345. doi:10.1016/j.clinph.2013.01.022.

    Abstract

    Objective Most rhyme awareness assessments do not encompass measures of the global similarity effect (i.e., children who are able to perform simple rhyme judgments get confused when presented with globally similar non-rhyming pairs). The present study examines the neural nature of this effect by studying the N450 rhyme effect. Methods Behavioral and electrophysiological responses of Dutch pre-literate kindergartners and literate second graders were recorded while they made rhyme judgments of word pairs in three conditions; phonologically rhyming (e.g., wijn-pijn), overlapping non-rhyming (e.g., pen-pijn) and unrelated non-rhyming pairs (e.g., boom-pijn). Results Behaviorally, both groups had difficulty judging overlapping but not rhyming and unrelated pairs. The neural data of second graders showed overlapping pairs were processed in a similar fashion as unrelated pairs; both showed a more negative deflection of the N450 component than rhyming items. Kindergartners did not show a typical N450 rhyme effect. However, some other interesting ERP differences were observed, indicating preliterates are sensitive to rhyme at a certain level. Significance Rhyme judgments of globally similar items rely on the same process as rhyme judgments of rhyming and unrelated items. Therefore, incorporating a globally similar condition in rhyme assessments may lead to a more in-depth measure of early phonological awareness skills. Highlights Behavioral and electrophysiological responses were recorded while (pre)literate children made rhyme judgments of rhyming, overlapping and unrelated words. Behaviorally both groups had difficulty judging overlapping pairs as non-rhyming while overlapping and unrelated neural patterns were similar in literates. Preliterates show a different pattern indicating a developing phonological system.
  • Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2013). ERP evidence on the interaction between information structure and emotional salience of words. Cognitive, Affective and Behavioral Neuroscience, 13, 297-310. doi:10.3758/s13415-012-0146-2.

    Abstract

    Both emotional words and words focused by information structure can capture attention. This study examined the interplay between emotional salience and information structure in modulating attentional resources in the service of integrating emotional words into sentence context. Event-related potentials (ERPs) to affectively negative, neutral, and positive words, which were either focused or nonfocused in question–answer pairs, were evaluated during sentence comprehension. The results revealed an early negative effect (90–200 ms), a P2 effect, as well as an effect in the N400 time window, for both emotional salience and information structure. Moreover, an interaction between emotional salience and information structure occurred within the N400 time window over right posterior electrodes, showing that information structure influences the semantic integration only for neutral words, but not for emotional words. This might reflect the fact that the linguistic salience of emotional words can override the effect of information structure on the integration of words into context. The interaction provides evidence for attention–emotion interactions at a later stage of processing. In addition, the absence of interaction in the early time window suggests that the processing of emotional information is highly automatic and independent of context. The results suggest independent attention capture systems of emotional salience and information structure at the early stage but an interaction between them at a later stage, during the semantic integration of words.
  • Wang, L., Zhu, Z., Bastiaansen, M. C. M., Hagoort, P., & Yang, Y. (2013). Recognizing the emotional valence of names: An ERP study. Brain and Language, 125, 118-127. doi:10.1016/j.bandl.2013.01.006.

    Abstract

    Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional valence only for nouns. This might reflect automatic attention directed towards emotional stimuli. The absence of such an effect for names supports the notion that the emotional meaning carried by names is accessed after word recognition and person identification. In addition, both names with negative valence and emotional nouns elicited late positive effects, which have been associated with evaluation of emotional significance. This positive effect started earlier for nouns than for names, but with similar durations. Our results suggest that distinct neural systems are involved in the retrieval of names’ and nouns’ emotional meaning.
  • Wang, L., & Chu, M. (2013). The role of beat gesture and pitch accent in semantic processing: An ERP study. Neuropsychologia, 51(13), 2847-2855. doi:10.1016/j.neuropsychologia.2013.09.027.

    Abstract

    The present study investigated whether and how beat gesture (small baton-like hand movements used to emphasize information in speech) influences semantic processing as well as its interaction with pitch accent during speech comprehension. Event-related potentials were recorded as participants watched videos of a person gesturing and speaking simultaneously. The critical words in the spoken sentences were accompanied by a beat gesture, a control hand movement, or no hand movement, and were expressed either with or without pitch accent. We found that both beat gesture and control hand movement induced smaller negativities in the N400 time window than when no hand movement was presented. The reduced N400s indicate that both beat gesture and control movement facilitated the semantic integration of the critical word into the sentence context. In addition, the words accompanied by beat gesture elicited smaller negativities in the N400 time window than those accompanied by control hand movement over right posterior electrodes, suggesting that beat gesture has a unique role for enhancing semantic processing during speech comprehension. Finally, no interaction was observed between beat gesture and pitch accent, indicating that they affect semantic processing independently.
  • Whitmarsh, S., Udden, J., Barendregt, H., & Petersson, K. M. (2013). Mindfulness reduces habitual responding based on implicit knowledge: Evidence from artificial grammar learning. Consciousness and Cognition, (3), 833-845. doi:10.1016/j.concog.2013.05.007.

    Abstract

    Participants were unknowingly exposed to complex regularities in a working memory task. The existence of implicit knowledge was subsequently inferred from a preference for stimuli with similar grammatical regularities. Several affective traits have been shown to influence
    AGL performance positively, many of which are related to a tendency for automatic responding. We therefore tested whether the mindfulness trait predicted a reduction of grammatically congruent preferences, and used emotional primes to explore the influence of affect. Mindfulness was shown to correlate negatively with grammatically congruent responses. Negative primes were shown to result in faster and more negative evaluations.
    We conclude that grammatically congruent preference ratings rely on habitual responses, and that our findings provide empirical evidence for the non-reactive disposition of the mindfulness trait.
  • Willems, R. M. (2013). Can literary studies contribute to cognitive neuroscience? Journal of literary semantics, 42(2), 217-222. doi:10.1515/jls-2013-0011.
  • Adank, P., Hagoort, P., & Bekkering, H. (2010). Imitation improves language comprehension. Psychological Science, 21, 1903-1909. doi:10.1177/0956797610389192.

    Abstract

    Humans imitate each other during social interaction. This imitative behavior streamlines social interaction and aids in learning to replicate actions. However, the effect of imitation on action comprehension is unclear. This study investigated whether vocal imitation of an unfamiliar accent improved spoken-language comprehension. Following a pretraining accent comprehension test, participants were assigned to one of six groups. The baseline group received no training, but participants in the other five groups listened to accented sentences, listened to and repeated accented sentences in their own accent, listened to and transcribed accented sentences, listened to and imitated accented sentences, or listened to and imitated accented sentences without being able to hear their own vocalizations. Posttraining measures showed that accent comprehension was most improved for participants who imitated the speaker’s accent. These results show that imitation may aid in streamlining interaction by improving spoken-language comprehension under adverse listening conditions.
  • Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528-1540. doi:10.1016/j.neuroimage.2010.05.048.

    Abstract

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations.
  • Araújo, S., Pacheco, A., Faísca, L., Petersson, K. M., & Reis, A. (2010). Visual rapid naming and phonological abilities: Different subtypes in dyslexic children. International Journal of Psychology, 45, 443-452. doi:10.1080/00207594.2010.499949.

    Abstract

    One implication of the double-deficit hypothesis for dyslexia is that there should be subtypes of dyslexic readers that exhibit rapid naming deficits with or without concomitant phonological processing problems. In the current study, we investigated the validity of this hypothesis for Portuguese orthography, which is more consistent than English orthography, by exploring different cognitive profiles in a sample of dyslexic children. In particular, we were interested in identifying readers characterized by a pure rapid automatized naming deficit. We also examined whether rapid naming and phonological awareness independently account for individual differences in reading performance. We characterized the performance of dyslexic readers and a control group of normal readers matched for age on reading, visual rapid naming and phonological processing tasks. Our results suggest that there is a subgroup of dyslexic readers with intact phonological processing capacity (in terms of both accuracy and speed measures) but poor rapid naming skills. We also provide evidence for an independent association between rapid naming and reading competence in the dyslexic sample, when the effect of phonological skills was controlled. Altogether, the results are more consistent with the view that rapid naming problems in dyslexia represent a second core deficit rather than an exclusive phonological explanation for the rapid naming deficits. Furthermore, additional non-phonological processes, which subserve rapid naming performance, contribute independently to reading development.
  • Baggio, G., Choma, T., Van Lambalgen, M., & Hagoort, P. (2010). Coercion and compositionality. Journal of Cognitive Neuroscience, 22, 2131-2140. doi:10.1162/jocn.2009.21303.

    Abstract

    Research in psycholinguistics and in the cognitive neuroscience of language has suggested that semantic and syntactic integration are associated with different neurophysiologic correlates, such as the N400 and the P600 in the ERPs. However, only a handful of studies have investigated the neural basis of the syntax–semantics interface, and even fewer experiments have dealt with the cases in which semantic composition can proceed independently of the syntax. Here we looked into one such case—complement coercion—using ERPs. We compared sentences such as, “The journalist wrote the article” with “The journalist began the article.” The second sentence seems to involve a silent semantic element, which is expressed in the first sentence by the head of the VP “wrote the article.” The second type of construction may therefore require the reader to infer or recover from memory a richer event sense of the VP “began the article,” such as began writing the article, and to integrate that into a semantic representation of the sentence. This operation is referred to as “complement coercion.” Consistently with earlier reading time, eye tracking, and MEG studies, we found traces of such additional computations in the ERPs: Coercion gives rise to a long-lasting negative shift, which differs at least in duration from a standard N400 effect. Issues regarding the nature of the computation involved are discussed in the light of a neurocognitive model of language processing and a formal semantic analysis of coercion.
  • Bastiaansen, M. C. M., Magyari, L., & Hagoort, P. (2010). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22, 1333-1347. doi:10.1162/jocn.2009.21283.

    Abstract

    There is growing evidence suggesting that synchronization changes in the oscillatory neuronal dynamics in the EEG or MEG reflect the transient coupling and uncoupling of functional networks related to different aspects of language comprehension. In this work, we examine how sentence-level syntactic unification operations are reflected in the oscillatory dynamics of the MEG. Participants read sentences that were either correct, contained a word category violation, or were constituted of random word sequences devoid of syntactic structure. A time-frequency analysis of MEG power changes revealed three types of effects. The first type of effect was related to the detection of a (word category) violation in a syntactically structured sentence, and was found in the alpha and gamma frequency bands. A second type of effect was maximally sensitive to the syntactic manipulations: A linear increase in beta power across the sentence was present for correct sentences, was disrupted upon the occurrence of a word category violation, and was absent in syntactically unstructured random word sequences. We therefore relate this effect to syntactic unification operations. Thirdly, we observed a linear increase in theta power across the sentence for all syntactically structured sentences. The effects are tentatively related to the building of a working memory trace of the linguistic input. In conclusion, the data seem to suggest that syntactic unification is reflected by neuronal synchronization in the lower-beta frequency band.
  • Bramão, I., Faísca, L., Forkstam, C., Reis, A., & Petersson, K. M. (2010). Cortical brain regions associated with color processing: An FMRI study. The Open Neuroimaging Journal, 4, 164-173. doi:10.2174/1874440001004010164.

    Abstract

    To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-sense objects we examined functional magnetic resonance imaging (FMRI) responses during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-sense objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural and artifacts objects, but not for non-sense objects. The recognition of non-sense colored objects compared to the recognition of color objects activated the posterior cingulate/precuneus (BA 7/23/31), suggesting that color attribute induces the mental operation of trying to associate a non-sense composition with a familiar objects. When color objects (both natural and artifacts) were contrasted with color nonobjects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that improve object recognition (based on behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition
  • Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2010). The influence of surface color information and color knowledge information in object recognition. American Journal of Psychology, 123, 437-466. Retrieved from http://www.jstor.org/stable/10.5406/amerjpsyc.123.4.0437.

    Abstract

    In order to clarify whether the influence of color knowledge information in object recognition depends on the presence of the appropriate surface color, we designed a name—object verification task. The relationship between color and shape information provided by the name and by the object photo was manipulated in order to assess color interference independently of shape interference. We tested three different versions for each object: typically colored, black and white, and nontypically colored. The response times on the nonmatching trials were used to measure the interference between the name and the photo. We predicted that the more similar the name and the photo are, the longer it would take to respond. Overall, the color similarity effect disappeared in the black-and-white and nontypical color conditions, suggesting that the influence of color knowledge on object recognition depends on the presence of the appropriate surface color information.

Share this page