Publications

Displaying 1 - 100 of 110
  • Arana, S., Pesnot Lerousseau, J., & Hagoort, P. (2023). Deep learning models to study sentence comprehension in the human brain. Language, Cognition and Neuroscience. Advance online publication. doi:10.1080/23273798.2023.2198245.

    Abstract

    Recent artificial neural networks that process natural language achieve unprecedented performance in tasks requiring sentence-level understanding. As such, they could be interesting models of the integration of linguistic information in the human brain. We review works that compare these artificial language models with human brain activity and we assess the extent to which this approach has improved our understanding of the neural processes involved in natural language comprehension. Two main results emerge. First, the neural representation of word meaning aligns with the context-dependent, dense word vectors used by the artificial neural networks. Second, the processing hierarchy that emerges within artificial neural networks broadly matches the brain, but is surprisingly inconsistent across studies. We discuss current challenges in establishing artificial neural networks as process models of natural language comprehension. We suggest exploiting the highly structured representational geometry of artificial neural networks when mapping representations to brain data.

    Additional information

    link to preprint
  • Araujo, S., Narang, V., Misra, D., Lohagun, N., Khan, O., Singh, A., Mishra, R. K., Hervais-Adelman, A., & Huettig, F. (2023). A literacy-related color-specific deficit in rapid automatized naming: Evidence from neurotypical completely illiterate and literate adults. Journal of Experimental Psychology: General, 152(8), 2403-2409. doi:10.1037/xge0001376.

    Abstract

    There is a robust positive relationship between reading skills and the time to name aloud an array of letters, digits, objects, or colors as quickly as possible. A convincing and complete explanation for the direction and locus of this association remains, however, elusive. In this study we investigated rapid automatized naming (RAN) of every-day objects and basic color patches in neurotypical illiterate and literate adults. Literacy acquisition and education enhanced RAN performance for both conceptual categories but this advantage was much larger for (abstract) colors than every-day objects. This result suggests that (i) literacy/education may be causal for serial rapid naming ability of non-alphanumeric items, (ii) differences in the lexical quality of conceptual representations can underlie the reading-related differential RAN performance.

    Additional information

    supplementary text
  • Bastiaanse, R., & Ohlerth, A.-K. (2023). Presurgical language mapping: What are we testing? Journal of Personalized Medicine, 13: 376. doi:10.3390/jpm13030376.

    Abstract

    Gliomas are brain tumors infiltrating healthy cortical and subcortical areas that may host cognitive functions, such as language. If these areas are damaged during surgery, the patient might develop word retrieval or articulation problems. For this reason, many glioma patients are operated on awake, while their language functions are tested. For this practice, quite simple tests are used, for example, picture naming. This paper describes the process and timeline of picture naming (noun retrieval) and shows the timeline and localization of the distinguished stages. This is relevant information for presurgical language testing with navigated Magnetic Stimulation (nTMS). This novel technique allows us to identify cortical involved in the language production process and, thus, guides the neurosurgeon in how to approach and remove the tumor. We argue that not only nouns, but also verbs should be tested, since sentences are built around verbs, and sentences are what we use in daily life. This approach’s relevance is illustrated by two case studies of glioma patients.
  • Bauer, B. L. M. (2023). Multiplication, addition, and subtraction in numerals: Formal variation in Latin’s decads+ from an Indo-European perspective. Journal of Latin Linguistics, 22(1), 1-56. doi:10.1515/joll-2023-2001.

    Abstract

    While formal variation in Latin’s numerals is generally acknowledged, little is known about (relative) incidence, distribution, context, or linguistic productivity. Addressing this lacuna, this article examines “decads+” in Latin, which convey the numbers between the full decads: the teens (‘eleven’ through ‘nineteen’) as well as the numerals between the higher decads starting at ‘twenty-one’ through ‘ninety-nine’. Latin’s decads+ are compounds and prone to variation. The data, which are drawn from a variety of sources, reveal (a) substantial formal variation in Latin, both internally and typologically; (b) co-existence of several types of formation; (c) productivity of potential borrowings; (d) resilience of early formations; (e) patterns in structure and incidence that anticipate the Romance numerals; and (f) historical trends. From a typological and general linguistic perspective as well, Latin’s decads+ are most relevant because their formal variation involves sequence, connector, and arithmetical operations and because their historical depth shows a gradual shift away from widespread formal variation, eventually resulting in the relatively rigid system found in Romance. Moreover, the combined system attested in decads+ in Latin – based on a combination of inherited, innovative and borrowed patterns and reflecting different stages of development – presents a number of typological inconsistencies that require further assessment

    Files private

    Request files
  • Benetti, S., Ferrari, A., & Pavani, F. (2023). Multimodal processing in face-to-face interactions: A bridging link between psycholinguistics and sensory neuroscience. Frontiers in Human Neuroscience, 17: 1108354. doi:10.3389/fnhum.2023.1108354.

    Abstract

    In face-to-face communication, humans are faced with multiple layers of discontinuous multimodal signals, such as head, face, hand gestures, speech and non-speech sounds, which need to be interpreted as coherent and unified communicative actions. This implies a fundamental computational challenge: optimally binding only signals belonging to the same communicative action while segregating signals that are not connected by the communicative content. How do we achieve such an extraordinary feat, reliably, and efficiently? To address this question, we need to further move the study of human communication beyond speech-centred perspectives and promote a multimodal approach combined with interdisciplinary cooperation. Accordingly, we seek to reconcile two explanatory frameworks recently proposed in psycholinguistics and sensory neuroscience into a neurocognitive model of multimodal face-to-face communication. First, we introduce a psycholinguistic framework that characterises face-to-face communication at three parallel processing levels: multiplex signals, multimodal gestalts and multilevel predictions. Second, we consider the recent proposal of a lateral neural visual pathway specifically dedicated to the dynamic aspects of social perception and reconceive it from a multimodal perspective (“lateral processing pathway”). Third, we reconcile the two frameworks into a neurocognitive model that proposes how multiplex signals, multimodal gestalts, and multilevel predictions may be implemented along the lateral processing pathway. Finally, we advocate a multimodal and multidisciplinary research approach, combining state-of-the-art imaging techniques, computational modelling and artificial intelligence for future empirical testing of our model.
  • Bulut, T. (2023). Domain‐general and domain‐specific functional networks of Broca's area underlying language processing. Brain and Behavior, 13(7): e3046. doi:10.1002/brb3.3046.

    Abstract

    Introduction
    Despite abundant research on the role of Broca's area in language processing, there is still no consensus on language specificity of this region and its connectivity network.

    Methods
    The present study employed the meta-analytic connectivity modeling procedure to identify and compare domain-specific (language-specific) and domain-general (shared between language and other domains) functional connectivity patterns of three subdivisions within the broadly defined Broca's area: pars opercularis (IFGop), pars triangularis (IFGtri), and pars orbitalis (IFGorb) of the left inferior frontal gyrus.

    Results
    The findings revealed a left-lateralized frontotemporal network for all regions of interest underlying domain-specific linguistic functions. The domain-general network, however, spanned frontoparietal regions that overlap with the multiple-demand network and subcortical regions spanning the thalamus and the basal ganglia.

    Conclusions
    The findings suggest that language specificity of Broca's area emerges within a left-lateralized frontotemporal network, and that domain-general resources are garnered from frontoparietal and subcortical networks when required by task demands.

    Additional information

    Supporting Information Data availability
  • Carota, F., Schoffelen, J.-M., Oostenveld, R., & Indefrey, P. (2023). Parallel or sequential? Decoding conceptual and phonological/phonetic information from MEG signals during language production. Cognitive Neuropsychology, 40(5-6), 298-317. doi:10.1080/02643294.2023.2283239.

    Abstract

    Speaking requires the temporally coordinated planning of core linguistic information, from conceptual meaning to articulation. Recent neurophysiological results suggested that these operations involve a cascade of neural events with subsequent onset times, whilst competing evidence suggests early parallel neural activation. To test these hypotheses, we examined the sources of neuromagnetic activity recorded from 34 participants overtly naming 134 images from 4 object categories (animals, tools, foods and clothes). Within each category, word length and phonological neighbourhood density were co-varied to target phonological/phonetic processes. Multivariate pattern analyses (MVPA) searchlights in source space decoded object categories in occipitotemporal and middle temporal cortex, and phonological/phonetic variables in left inferior frontal (BA 44) and motor cortex early on. The findings suggest early activation of multiple variables due to intercorrelated properties and interactivity of processing, thus raising important questions about the representational properties of target words during the preparatory time enabling overt speaking.
  • Coopmans, C. W., Struiksma, M. E., Coopmans, P. H. A., & Chen, A. (2023). Processing of grammatical agreement in the face of variation in lexical stress: A mismatch negativity study. Language and Speech, 66(1), 202-213. doi:10.1177/00238309221098116.

    Abstract

    Previous electroencephalography studies have yielded evidence for automatic processing of syntax and lexical stress. However, these studies looked at both effects in isolation, limiting their generalizability to everyday language comprehension. In the current study, we investigated automatic processing of grammatical agreement in the face of variation in lexical stress. Using an oddball paradigm, we measured the Mismatch Negativity (MMN) in Dutch-speaking participants while they listened to Dutch subject–verb sequences (linguistic context) or acoustically similar sequences in which the subject was replaced by filtered noise (nonlinguistic context). The verb forms differed in the inflectional suffix, rendering the subject–verb sequences grammatically correct or incorrect, and leading to a difference in the stress pattern of the verb forms. We found that the MMNs were modulated in both the linguistic and nonlinguistic condition, suggesting that the processing load induced by variation in lexical stress can hinder early automatic processing of grammatical agreement. However, as the morphological differences between the verb forms correlated with differences in number of syllables, an interpretation in terms of the prosodic structure of the sequences cannot be ruled out. Future research is needed to determine which of these factors (i.e., lexical stress, syllabic structure) most strongly modulate early syntactic processing.

    Additional information

    supplementary material
  • Coopmans, C. W., Mai, A., Slaats, S., Weissbart, H., & Martin, A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. Nature Reviews Neuroscience, 24, 723. doi:10.1038/s41583-023-00734-5.
  • Coopmans, C. W., Kaushik, K., & Martin, A. E. (2023). Hierarchical structure in language and action: A formal comparison. Psychological Review, 130(4), 935-952. doi:10.1037/rev0000429.

    Abstract

    Since the cognitive revolution, language and action have been compared as cognitive systems, with cross-domain convergent views recently gaining renewed interest in biology, neuroscience, and cognitive science. Language and action are both combinatorial systems whose mode of combination has been argued to be hierarchical, combining elements into constituents of increasingly larger size. This structural similarity has led to the suggestion that they rely on shared cognitive and neural resources. In this article, we compare the conceptual and formal properties of hierarchy in language and action using set theory. We show that the strong compositionality of language requires a particular formalism, a magma, to describe the algebraic structure corresponding to the set of hierarchical structures underlying sentences. When this formalism is applied to actions, it appears to be both too strong and too weak. To overcome these limitations, which are related to the weak compositionality and sequential nature of action structures, we formalize the algebraic structure corresponding to the set of actions as a trace monoid. We aim to capture the different system properties of language and action in terms of the distinction between hierarchical sets and hierarchical sequences and discuss the implications for the way both systems could be represented in the brain.
  • Coventry, K. R., Gudde, H. B., Diessel, H., Collier, J., Guijarro-Fuentes, P., Vulchanova, M., Vulchanov, V., Todisco, E., Reile, M., Breunesse, M., Plado, H., Bohnemeyer, J., Bsili, R., Caldano, M., Dekova, R., Donelson, K., Forker, D., Park, Y., Pathak, L. S., Peeters, D. and 25 moreCoventry, K. R., Gudde, H. B., Diessel, H., Collier, J., Guijarro-Fuentes, P., Vulchanova, M., Vulchanov, V., Todisco, E., Reile, M., Breunesse, M., Plado, H., Bohnemeyer, J., Bsili, R., Caldano, M., Dekova, R., Donelson, K., Forker, D., Park, Y., Pathak, L. S., Peeters, D., Pizzuto, G., Serhan, B., Apse, L., Hesse, F., Hoang, L., Hoang, P., Igari, Y., Kapiley, K., Haupt-Khutsishvili, T., Kolding, S., Priiki, K., Mačiukaitytė, I., Mohite, V., Nahkola, T., Tsoi, S. Y., Williams, S., Yasuda, S., Cangelosi, A., Duñabeitia, J. A., Mishra, R. K., Rocca, R., Šķilters, J., Wallentin, M., Žilinskaitė-Šinkūnienė, E., & Incel, O. D. (2023). Spatial communication systems across languages reflect universal action constraints. Nature Human Behaviour, 77, 2099-2110. doi:10.1038/s41562-023-01697-4.

    Abstract

    The extent to which languages share properties reflecting the non-linguistic constraints of the speakers who speak them is key to the debate regarding the relationship between language and cognition. A critical case is spatial communication, where it has been argued that semantic universals should exist, if anywhere. Here, using an experimental paradigm able to separate variation within a language from variation between languages, we tested the use of spatial demonstratives—the most fundamental and frequent spatial terms across languages. In n = 874 speakers across 29 languages, we show that speakers of all tested languages use spatial demonstratives as a function of being able to reach or act on an object being referred to. In some languages, the position of the addressee is also relevant in selecting between demonstrative forms. Commonalities and differences across languages in spatial communication can be understood in terms of universal constraints on action shaping spatial language and cognition.
  • Dikshit, A. P., Mishra, C., Das, D., & Parashar, S. (2023). Frequency and temperature-dependence ZnO based fractional order capacitor using machine learning. Materials Chemistry and Physics, 307: 128097. doi:10.1016/j.matchemphys.2023.128097.

    Abstract

    This paper investigates the fractional order behavior of ZnO ceramics at different frequencies. ZnO ceramic was prepared by high energy ball milling technique (HEBM) sintered at 1300℃ to study the frequency response properties. The frequency response properties (impedance and phase
    angles) were examined by analyzing through impedance analyzer (100 Hz - 1 MHz). Constant phase angles (84°-88°) were obtained at low temperature ranges (25 ℃-125 ℃). The structural and
    morphological composition of the ZnO ceramic was investigated using X-ray diffraction techniques and FESEM. Raman spectrum was studied to understand the different modes of ZnO ceramics. Machine learning (polynomial regression) models were trained on a dataset of 1280
    experimental values to accurately predict the relationship between frequency and temperature with respect to impedance and phase values of the ZnO ceramic FOC. The predicted impedance values were found to be in good agreement (R2 ~ 0.98, MSE ~ 0.0711) with the experimental results.
    Impedance values were also predicted beyond the experimental frequency range (at 50 Hz and 2 MHz) for different temperatures (25℃ - 500℃) and for low temperatures (10°, 15° and 20℃)
    within the frequency range (100Hz - 1MHz).

    Files private

    Request files
  • Doerig, A., Sommers, R. P., Seeliger, K., Richards, B., Ismael, J., Lindsay, G. W., Kording, K. P., Konkle, T., Van Gerven, M. A. J., Kriegeskorte, N., & Kietzmann, T. C. (2023). The neuroconnectionist research programme. Nature Reviews Neuroscience, 24, 431-450. doi:10.1038/s41583-023-00705-w.

    Abstract

    Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to model behavioural and neural data, an approach we call ‘neuroconnectionism’. ANNs have been not only lauded as the current best models of information processing in the brain but also criticized for failing to account for basic cognitive functions. In this Perspective article, we propose that arguing about the successes and failures of a restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism for brain science. Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who showed that the core of a scientific research programme is often not directly falsifiable but should be assessed by its capacity to generate novel insights. Following this view, we present neuroconnectionism as a general research programme centred around ANNs as a computational language for expressing falsifiable theories about brain computation. We describe the core of the programme, the underlying computational framework and its tools for testing specific neuroscientific hypotheses and deriving novel understanding. Taking a longitudinal view, we review past and present neuroconnectionist projects and their responses to challenges and argue that the research programme is highly progressive, generating new and otherwise unreachable insights into the workings of the brain.
  • Drijvers, L., & Holler, J. (2023). The multimodal facilitation effect in human communication. Psychonomic Bulletin & Review, 30(2), 792-801. doi:10.3758/s13423-022-02178-x.

    Abstract

    During face-to-face communication, recipients need to rapidly integrate a plethora of auditory and visual signals. This integration of signals from many different bodily articulators, all offset in time, with the information in the speech stream may either tax the cognitive system, thus slowing down language processing, or may result in multimodal facilitation. Using the classical shadowing paradigm, participants shadowed speech from face-to-face, naturalistic dyadic conversations in an audiovisual context, an audiovisual context without visual speech (e.g., lips), and an audio-only context. Our results provide evidence of a multimodal facilitation effect in human communication: participants were faster in shadowing words when seeing multimodal messages compared with when hearing only audio. Also, the more visual context was present, the fewer shadowing errors were made, and the earlier in time participants shadowed predicted lexical items. We propose that the multimodal facilitation effect may contribute to the ease of fast face-to-face conversational interaction.
  • Eekhof, L. S., Van Krieken, K., Sanders, J., & Willems, R. M. (2023). Engagement with narrative characters: The role of social-cognitive abilities and linguistic viewpoint. Discourse Processes, 60(6), 411-439. doi:10.1080/0163853X.2023.2206773.

    Abstract

    This article explores the role of text and reader characteristics in character engagement experiences. In an online study, participants completed several self-report and behavioral measures of social-cognitive abilities and read two literary narratives in which the presence of linguistic viewpoint markers was varied using a highly controlled manipulation strategy. Afterward, participants reported on their character engagement experiences. A principal component analysis on participants’ responses revealed the multidimensional nature of character engagement, which included both self- and other-oriented emotional responses (e.g., empathy, personal distress) as well as more cognitive responses (e.g., identification, perspective taking). Furthermore, character engagement was found to rely on a wide range of social-cognitive abilities but not on the presence of viewpoint markers. Finally, and most importantly, we did not find convincing evidence for an interplay between social-cognitive abilities and the presence of viewpoint markers. These findings suggest that readers rely on their social-cognitive abilities to engage with the inner worlds of fictional others, more so than on the lexical cues of those inner worlds provided by the text.
  • Hagoort, P. (2023). The language marker hypothesis. Cognition, 230: 105252. doi:10.1016/j.cognition.2022.105252.

    Abstract

    According to the language marker hypothesis language has provided homo sapiens with a rich symbolic system that plays a central role in interpreting signals delivered by our sensory apparatus, in shaping action goals, and in creating a powerful tool for reasoning and inferencing. This view provides an important correction on embodied accounts of language that reduce language to action, perception, emotion and mental simulation. The presence of a language system has, however, also important consequences for perception, action, emotion, and memory. Language stamps signals from perception, action, and emotional systems with rich cognitive markers that transform the role of these signals in the overall cognitive architecture of the human mind. This view does not deny that language is implemented by means of universal principles of neural organization. However, language creates the possibility to generate rich internal models of the world that are shaped and made accessible by the characteristics of a language system. This makes us less dependent on direct action-perception couplings and might even sometimes go at the expense of the veridicality of perception. In cognitive (neuro)science the pendulum has swung from language as the key to understand the organization of the human mind to the perspective that it is a byproduct of perception and action. It is time that it partly swings back again.
  • Henke, L., Lewis, A. G., & Meyer, L. (2023). Fast and slow rhythms of naturalistic reading revealed by combined eye-tracking and electroencephalography. The Journal of Neuroscience, 43(24), 4461-4469. doi:10.1523/JNEUROSCI.1849-22.2023.

    Abstract

    Neural oscillations are thought to support speech and language processing. They may not only inherit acoustic rhythms, but might also impose endogenous rhythms onto processing. In support of this, we here report that human (both male and female) eye movements during naturalistic reading exhibit rhythmic patterns that show frequency-selective coherence with the EEG, in the absence of any stimulation rhythm. Periodicity was observed in two distinct frequency bands: First, word-locked saccades at 4-5 Hz display coherence with whole-head theta-band activity. Second, fixation durations fluctuate rhythmically at ∼1 Hz, in coherence with occipital delta-band activity. This latter effect was additionally phase-locked to sentence endings, suggesting a relationship with the formation of multi-word chunks. Together, eye movements during reading contain rhythmic patterns that occur in synchrony with oscillatory brain activity. This suggests that linguistic processing imposes preferred processing time scales onto reading, largely independent of actual physical rhythms in the stimulus.
  • De Hoop, H., Levshina, N., & Segers, M. (2023). The effect of the use of T and V pronouns in Dutch HR communication. Journal of Pragmatics, 203, 96-109. doi:10.1016/j.pragma.2022.11.017.

    Abstract

    In an online experiment among native speakers of Dutch we measured addressees' responses to emails written in the informal pronoun T or the formal pronoun V in HR communication. 172 participants (61 male, mean age 37 years) read either the V-versions or the T-versions of two invitation emails and two rejection emails by four different fictitious recruiters. After each email, participants had to score their appreciation of the company and the recruiter on five different scales each, such as The recruiter who wrote this email seems … [scale from friendly to unfriendly]. We hypothesized that (i) the V-pronoun would be more appreciated in letters of rejection, and the T-pronoun in letters of invitation, and (ii) older people would appreciate the V-pronoun more than the T-pronoun, and the other way around for younger people. Although neither of these hypotheses was supported, we did find a small effect of pronoun: Emails written in V were more highly appreciated than emails in T, irrespective of type of email (invitation or rejection), and irrespective of the participant's age, gender, and level of education. At the same time, we observed differences in the strength of this effect across different scales.
  • Huizeling, E., Alday, P. M., Peeters, D., & Hagoort, P. (2023). Combining EEG and 3D-eye-tracking to study the prediction of upcoming speech in naturalistic virtual environments: A proof of principle. Neuropsychologia, 191: 108730. doi:10.1016/j.neuropsychologia.2023.108730.

    Abstract

    EEG and eye-tracking provide complementary information when investigating language comprehension. Evidence that speech processing may be facilitated by speech prediction comes from the observation that a listener's eye gaze moves towards a referent before it is mentioned if the remainder of the spoken sentence is predictable. However, changes to the trajectory of anticipatory fixations could result from a change in prediction or an attention shift. Conversely, N400 amplitudes and concurrent spectral power provide information about the ease of word processing the moment the word is perceived. In a proof-of-principle investigation, we combined EEG and eye-tracking to study linguistic prediction in naturalistic, virtual environments. We observed increased processing, reflected in theta band power, either during verb processing - when the verb was predictive of the noun - or during noun processing - when the verb was not predictive of the noun. Alpha power was higher in response to the predictive verb and unpredictable nouns. We replicated typical effects of noun congruence but not predictability on the N400 in response to the noun. Thus, the rich visual context that accompanied speech in virtual reality influenced language processing compared to previous reports, where the visual context may have facilitated processing of unpredictable nouns. Finally, anticipatory fixations were predictive of spectral power during noun processing and the length of time fixating the target could be predicted by spectral power at verb onset, conditional on the object having been fixated. Overall, we show that combining EEG and eye-tracking provides a promising new method to answer novel research questions about the prediction of upcoming linguistic input, for example, regarding the role of extralinguistic cues in prediction during language comprehension.
  • Hustá, C., Nieuwland, M. S., & Meyer, A. S. (2023). Effects of picture naming and categorization on concurrent comprehension: Evidence from the N400. Collabra: Psychology, 9(1): 88129. doi:10.1525/collabra.88129.

    Abstract

    n conversations, interlocutors concurrently perform two related processes: speech comprehension and speech planning. We investigated effects of speech planning on comprehension using EEG. Dutch speakers listened to sentences that ended with expected or unexpected target words. In addition, a picture was presented two seconds after target onset (Experiment 1) or 50 ms before target onset (Experiment 2). Participants’ task was to name the picture or to stay quiet depending on the picture category. In Experiment 1, we found a strong N400 effect in response to unexpected compared to expected target words. Importantly, this N400 effect was reduced in Experiment 2 compared to Experiment 1. Unexpectedly, the N400 effect was not smaller in the naming compared to categorization condition. This indicates that conceptual preparation or the decision whether to speak (taking place in both task conditions of Experiment 2) rather than processes specific to word planning interfere with comprehension.
  • Kałamała, P., Chuderski, A., Szewczyk, J., Senderecka, M., & Wodniecka, Z. (2023). Bilingualism caught in a net: A new approach to understanding the complexity of bilingual experience. Journal of Experimental Psychology: General, 152(1), 157-174. doi:10.1037/xge0001263.

    Abstract

    The growing importance of research on bilingualism in psychology and neuroscience motivates the need for a psychometric model that can be used to understand and quantify this phenomenon. This research is the first to meet this need. We reanalyzed two data sets (N = 171 and N = 112) from relatively young adult language-unbalanced bilinguals and asked whether bilingualism is best described by the factor structure or by the network structure. The factor and network models were established on one data set and then validated on the other data set in a fully confirmatory manner. The network model provided the best fit to the data. This implies that bilingualism should be conceptualized as an emergent phenomenon arising from direct and idiosyncratic dependencies among the history of language acquisition, diverse language skills, and language-use practices. These dependencies can be reduced to neither a single universal quotient nor to some more general factors. Additional in-depth network analyses showed that the subjective perception of proficiency along with language entropy and language mixing were the most central indices of bilingualism, thus indicating that these measures can be especially sensitive to variation in the overall bilingual experience. Overall, this work highlights the great potential of psychometric network modeling to gain a more accurate description and understanding of complex (psycho)linguistic and cognitive phenomena.
  • Kösem, A., Dai, B., McQueen, J. M., & Hagoort, P. (2023). Neural envelope tracking of speech does not unequivocally reflect intelligibility. NeuroImage, 272: 120040. doi:10.1016/j.neuroimage.2023.120040.

    Abstract

    During listening, brain activity tracks the rhythmic structures of speech signals. Here, we directly dissociated the contribution of neural envelope tracking in the processing of speech acoustic cues from that related to linguistic processing. We examined the neural changes associated with the comprehension of Noise-Vocoded (NV) speech using magnetoencephalography (MEG). Participants listened to NV sentences in a 3-phase training paradigm: (1) pre-training, where NV stimuli were barely comprehended, (2) training with exposure of the original clear version of speech stimulus, and (3) post-training, where the same stimuli gained intelligibility from the training phase. Using this paradigm, we tested if the neural responses of a speech signal was modulated by its intelligibility without any change in its acoustic structure. To test the influence of spectral degradation on neural envelope tracking independently of training, participants listened to two types of NV sentences (4-band and 2-band NV speech), but were only trained to understand 4-band NV speech. Significant changes in neural tracking were observed in the delta range in relation to the acoustic degradation of speech. However, we failed to find a direct effect of intelligibility on the neural tracking of speech envelope in both theta and delta ranges, in both auditory regions-of-interest and whole-brain sensor-space analyses. This suggests that acoustics greatly influence the neural tracking response to speech envelope, and that caution needs to be taken when choosing the control signals for speech-brain tracking analyses, considering that a slight change in acoustic parameters can have strong effects on the neural tracking response.
  • Lei, A., Willems, R. M., & Eekhof, L. S. (2023). Emotions, fast and slow: Processing of emotion words is affected by individual differences in need for affect and narrative absorption. Cognition and Emotion, 37(5), 997-1005. doi:10.1080/02699931.2023.2216445.

    Abstract

    Emotional words have consistently been shown to be processed differently than neutral words. However, few studies have examined individual variability in emotion word processing with longer, ecologically valid stimuli (beyond isolated words, sentences, or paragraphs). In the current study, we re-analysed eye-tracking data collected during story reading to reveal how individual differences in need for affect and narrative absorption impact the speed of emotion word reading. Word emotionality was indexed by affective-aesthetic potentials (AAP) calculated by a sentiment analysis tool. We found that individuals with higher levels of need for affect and narrative absorption read positive words more slowly. On the other hand, these individual differences did not influence the reading time of more negative words, suggesting that high need for affect and narrative absorption are characterised by a positivity bias only. In general, unlike most previous studies using more isolated emotion word stimuli, we observed a quadratic (U-shaped) effect of word emotionality on reading speed, such that both positive and negative words were processed more slowly than neutral words. Taken together, this study emphasises the importance of taking into account individual differences and task context when studying emotion word processing.
  • Levshina, N., Namboodiripad, S., Allassonnière-Tang, M., Kramer, M., Talamo, L., Verkerk, A., Wilmoth, S., Garrido Rodriguez, G., Gupton, T. M., Kidd, E., Liu, Z., Naccarato, C., Nordlinger, R., Panova, A., & Stoynova, N. (2023). Why we need a gradient approach to word order. Linguistics, 61(4), 825-883. doi:10.1515/ling-2021-0098.

    Abstract

    This article argues for a gradient approach to word order, which treats word order preferences, both within and across languages, as a continuous variable. Word order variability should be regarded as a basic assumption, rather than as something exceptional. Although this approach follows naturally from the emergentist usage-based view of language, we argue that it can be beneficial for all frameworks and linguistic domains, including language acquisition, processing, typology, language contact, language evolution and change, and formal approaches. Gradient approaches have been very fruitful in some domains, such as language processing, but their potential is not fully realized yet. This may be due to practical reasons. We discuss the most pressing methodological challenges in corpus-based and experimental research of word order and propose some practical solutions.
  • Levshina, N. (2023). Testing communicative and learning biases in a causal model of language evolution:A study of cues to Subject and Object. In M. Degano, T. Roberts, G. Sbardolini, & M. Schouwstra (Eds.), The Proceedings of the 23rd Amsterdam Colloquium (pp. 383-387). Amsterdam: University of Amsterdam.
  • Lewis, A. G., Schoffelen, J.-M., Bastiaansen, M., & Schriefers, H. (2023). Is beta in agreement with the relatives? Using relative clause sentences to investigate MEG beta power dynamics during sentence comprehension. Psychophysiology, 60(10): e14332. doi:10.1111/psyp.14332.

    Abstract

    There remains some debate about whether beta power effects observed during sentence comprehension reflect ongoing syntactic unification operations (beta-syntax hypothesis), or instead reflect maintenance or updating of the sentence-level representation (beta-maintenance hypothesis). In this study, we used magnetoencephalography to investigate beta power neural dynamics while participants read relative clause sentences that were initially ambiguous between a subject- or an object-relative reading. An additional condition included a grammatical violation at the disambiguation point in the relative clause sentences. The beta-maintenance hypothesis predicts a decrease in beta power at the disambiguation point for unexpected (and less preferred) object-relative clause sentences and grammatical violations, as both signal a need to update the sentence-level representation. While the beta-syntax hypothesis also predicts a beta power decrease for grammatical violations due to a disruption of syntactic unification operations, it instead predicts an increase in beta power for the object-relative clause condition because syntactic unification at the point of disambiguation becomes more demanding. We observed decreased beta power for both the agreement violation and object-relative clause conditions in typical left hemisphere language regions, which provides compelling support for the beta-maintenance hypothesis. Mid-frontal theta power effects were also present for grammatical violations and object-relative clause sentences, suggesting that violations and unexpected sentence interpretations are registered as conflicts by the brain's domain-general error detection system.

    Additional information

    data
  • Mak, M., Faber, M., & Willems, R. M. (2023). Different kinds of simulation during literary reading: Insights from a combined fMRI and eye-tracking study. Cortex, 162, 115-135. doi:10.1016/j.cortex.2023.01.014.

    Abstract

    Mental simulation is an important aspect of narrative reading. In a previous study, we found that gaze durations are differentially impacted by different kinds of mental simulation. Motor simulation, perceptual simulation, and mentalizing as elicited by literary short stories influenced eye movements in distinguishable ways (Mak & Willems, 2019). In the current study, we investigated the existence of a common neural locus for these different kinds of simulation. We additionally investigated whether individual differences during reading, as indexed by the eye movements, are reflected in domain-specific activations in the brain. We found a variety of brain areas activated by simulation-eliciting content, both modality-specific brain areas and a general simulation area. Individual variation in percent signal change in activated areas was related to measures of story appreciation as well as personal characteristics (i.e., transportability, perspective taking). Taken together, these findings suggest that mental simulation is supported by both domain-specific processes grounded in previous experiences, and by the neural mechanisms that underlie higher-order language processing (e.g., situation model building, event indexing, integration).

    Additional information

    figures localizer tasks appendix C1
  • Mazzini, S., Holler, J., & Drijvers, L. (2023). Studying naturalistic human communication using dual-EEG and audio-visual recordings. STAR Protocols, 4(3): 102370. doi:10.1016/j.xpro.2023.102370.

    Abstract

    We present a protocol to study naturalistic human communication using dual-EEG and audio-visual recordings. We describe preparatory steps for data collection including setup preparation, experiment design, and piloting. We then describe the data collection process in detail which consists of participant recruitment, experiment room preparation, and data collection. We also outline the kinds of research questions that can be addressed with the current protocol, including several analysis possibilities, from conversational to advanced time-frequency analyses.
    For complete details on the use and execution of this protocol, please refer to Drijvers and Holler (2022).
  • Mishra, C., Verdonschot, R. G., Hagoort, P., & Skantze, G. (2023). Real-time emotion generation in human-robot dialogue using large language models. Frontiers in Robotics and AI, 10: 1271610. doi:10.3389/frobt.2023.1271610.

    Abstract

    Affective behaviors enable social robots to not only establish better connections with humans but also serve as a tool for the robots to express their internal states. It has been well established that emotions are important to signal understanding in Human-Robot Interaction (HRI). This work aims to harness the power of Large Language Models (LLM) and proposes an approach to control the affective behavior of robots. By interpreting emotion appraisal as an Emotion Recognition in Conversation (ERC) tasks, we used GPT-3.5 to predict the emotion of a robot’s turn in real-time, using the dialogue history of the ongoing conversation. The robot signaled the predicted emotion using facial expressions. The model was evaluated in a within-subjects user study (N = 47) where the model-driven emotion generation was compared against conditions where the robot did not display any emotions and where it displayed incongruent emotions. The participants interacted with the robot by playing a card sorting game that was specifically designed to evoke emotions. The results indicated that the emotions were reliably generated by the LLM and the participants were able to perceive the robot’s emotions. It was found that the robot expressing congruent model-driven facial emotion expressions were perceived to be significantly more human-like, emotionally appropriate, and elicit a more positive impression. Participants also scored significantly better in the card sorting game when the robot displayed congruent facial expressions. From a technical perspective, the study shows that LLMs can be used to control the affective behavior of robots reliably in real-time. Additionally, our results could be used in devising novel human-robot interactions, making robots more effective in roles where emotional interaction is important, such as therapy, companionship, or customer service.
  • Quaresima, A., Fitz, H., Duarte, R., Van den Broek, D., Hagoort, P., & Petersson, K. M. (2023). The Tripod neuron: A minimal structural reduction of the dendritic tree. The Journal of Physiology, 601(15), 3007-3437. doi:10.1113/JP283399.

    Abstract

    Neuron models with explicit dendritic dynamics have shed light on mechanisms for coincidence detection, pathway selection and temporal filtering. However, it is still unclear which morphological and physiological features are required to capture these phenomena. In this work, we introduce the Tripod neuron model and propose a minimal structural reduction of the dendritic tree that is able to reproduce these computations. The Tripod is a three-compartment model consisting of two segregated passive dendrites and a somatic compartment modelled as an adaptive, exponential integrate-and-fire neuron. It incorporates dendritic geometry, membrane physiology and receptor dynamics as measured in human pyramidal cells. We characterize the response of the Tripod to glutamatergic and GABAergic inputs and identify parameters that support supra-linear integration, coincidence-detection and pathway-specific gating through shunting inhibition. Following NMDA spikes, the Tripod neuron generates plateau potentials whose duration depends on the dendritic length and the strength of synaptic input. When fitted with distal compartments, the Tripod encodes previous activity into a dendritic depolarized state. This dendritic memory allows the neuron to perform temporal binding, and we show that it solves transition and sequence detection tasks on which a single-compartment model fails. Thus, the Tripod can account for dendritic computations previously explained only with more detailed neuron models or neural networks. Due to its simplicity, the Tripod neuron can be used efficiently in simulations of larger cortical circuits.
  • Ryskin, R., & Nieuwland, M. S. (2023). Prediction during language comprehension: What is next? Trends in Cognitive Sciences, 27(11), 1032-1052. doi:10.1016/j.tics.2023.08.003.

    Abstract

    Prediction is often regarded as an integral aspect of incremental language comprehension, but little is known about the cognitive architectures and mechanisms that support it. We review studies showing that listeners and readers use all manner of contextual information to generate multifaceted predictions about upcoming input. The nature of these predictions may vary between individuals owing to differences in language experience, among other factors. We then turn to unresolved questions which may guide the search for the underlying mechanisms. (i) Is prediction essential to language processing or an optional strategy? (ii) Are predictions generated from within the language system or by domain-general processes? (iii) What is the relationship between prediction and memory? (iv) Does prediction in comprehension require simulation via the production system? We discuss promising directions for making progress in answering these questions and for developing a mechanistic understanding of prediction in language.
  • Seijdel, N., Marshall, T. R., & Drijvers, L. (2023). Rapid invisible frequency tagging (RIFT): A promising technique to study neural and cognitive processing using naturalistic paradigms. Cerebral Cortex, 33(5), 1626-1629. doi:10.1093/cercor/bhac160.

    Abstract

    Frequency tagging has been successfully used to investigate selective stimulus processing in electroencephalography (EEG) or magnetoencephalography (MEG) studies. Recently, new projectors have been developed that allow for frequency tagging at higher frequencies (>60 Hz). This technique, rapid invisible frequency tagging (RIFT), provides two crucial advantages over low-frequency tagging as (i) it leaves low-frequency oscillations unperturbed, and thus open for investigation, and ii) it can render the tagging invisible, resulting in more naturalistic paradigms and a lack of participant awareness. The development of this technique has far-reaching implications as oscillations involved in cognitive processes can be investigated, and potentially manipulated, in a more naturalistic manner.
  • Seyfried, F., & Udden, J. (2023). Phonotactics and syntax: Investigating functional specialisation during structured sequence processing. Language, Cognition and Neuroscience, 38(3), 346-358. doi:10.1080/23273798.2022.2116462.

    Abstract

    Frontal lobe organisation displays a functional gradient, with overarching processing goals located in parts anterior to more subordinate goals, processed more posteriorly. Functional specialisation for syntax and phonology within language relevant areas has been supported by meta-analyses and reviews, but never directly tested experimentally. We tested for organised functional specialisation by manipulating syntactic case and phonotactics, creating violations at the end of otherwise matched and predictable sentences. Both violations led to increased activation in expected language regions. We observe the clearest signs of a functional gradient for language processing in the medial frontal cortex, where syntactic violations activated a more anterior portion compared to the phonotactic violations. A large overlap of syntactic and phonotactic processing in the left inferior frontal gyrus (LIFG) supports the view that general structured sequence processes are located in this area. These findings are relevant for understanding how sentence processing is implemented in hierarchically organised processing steps in the frontal lobe.

    Additional information

    supplementary methods
  • Silva, S., Inácio, F., Rocha e Sousa, D., Gaspar, N., Folia, V., & Petersson, K. M. (2023). Formal language hierarchy reflects different levels of cognitive complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(4), 642-660. doi:10.1037/xlm0001182.

    Abstract

    Formal language hierarchy describes levels of increasing syntactic complexity (adjacent dependencies, nonadjacent nested, nonadjacent crossed) of which the transcription into a hierarchy of cognitive complexity remains under debate. The cognitive foundations of formal language hierarchy have been contradicted by two types of evidence: First, adjacent dependencies are not easier to learn compared to nonadjacent; second, crossed nonadjacent dependencies may be easier than nested. However, studies providing these findings may have engaged confounds: Repetition monitoring strategies may have accounted for participants’ high performance in nonadjacent dependencies, and linguistic experience may have accounted for the advantage of crossed dependencies. We conducted two artificial grammar learning experiments where we addressed these confounds by manipulating reliance on repetition monitoring and by testing participants inexperienced with crossed dependencies. Results showed relevant differences in learning adjacent versus nonadjacent dependencies and advantages of nested over crossed, suggesting that formal language hierarchy may indeed translate into a hierarchy of cognitive complexity
  • Tamaoka, K., Sakai, H., Miyaoka, Y., Ono, H., Fukuda, M., Wu, Y., & Verdonschot, R. G. (2023). Sentential inference bridging between lexical/grammatical knowledge and text comprehension among native Chinese speakers learning Japanese. PLoS One, 18(4): e0284331. doi:10.1371/journal.pone.0284331.

    Abstract

    The current study explored the role of sentential inference in connecting lexical/grammatical knowledge and overall text comprehension in foreign language learning. Using structural equation modeling (SEM), causal relationships were examined between four latent variables: lexical knowledge, grammatical knowledge, sentential inference, and text comprehension. The study analyzed 281 Chinese university students learning Japanese as a second language and compared two causal models: (1) the partially-mediated model, which suggests that lexical knowledge, grammatical knowledge, and sentential inference concurrently influence text comprehension, and (2) the wholly-mediated model, which posits that both lexical and grammatical knowledge impact sentential inference, which then further affects text comprehension. The SEM comparison analysis supported the wholly-mediated model, showing sequential causal relationships from lexical knowledge to sentential inference and then to text comprehension, without significant contribution from grammatical knowledge. The results indicate that sentential inference serves as a crucial bridge between lexical knowledge and text comprehension.
  • Tamaoka, K., Zhang, J., Koizumi, M., & Verdonschot, R. G. (2023). Phonological encoding in Tongan: An experimental investigation. Quarterly Journal of Experimental Psychology, 76(10), 2197-2430. doi:10.1177/17470218221138770.

    Abstract

    This study is the first to report chronometric evidence on Tongan language production. It has been speculated that the mora plays an important role during Tongan phonological encoding. A mora follows the (C)V form, so /a/ and /ka/ (but not /k/) denote a mora in Tongan. Using a picture-word naming paradigm, Tongan native speakers named pictures containing superimposed non-word distractors. This task has been used before in Japanese, Korean, and Vietnamese to investigate the initially selected unit during phonological encoding (IPU). Compared to control distractors, both onset and mora overlapping distractors resulted in faster naming latencies. Several alternative explanations for the pattern of results - proficiency in English, knowledge of Latin script, and downstream effects - are discussed. However, we conclude that Tongan phonological encoding likely natively uses the phoneme, and not the mora, as the IPU..

    Additional information

    supplemental material
  • Van Wonderen, E., & Nieuwland, M. S. (2023). Lexical prediction does not rationally adapt to prediction error: ERP evidence from pre-nominal articles. Journal of Memory and Language, 132: 104435. doi:10.1016/j.jml.2023.104435.

    Abstract

    People sometimes predict upcoming words during language comprehension, but debate remains on when and to what extent such predictions indeed occur. The rational adaptation hypothesis holds that predictions develop with expected utility: people predict more strongly when predictions are frequently confirmed (low prediction error) rather than disconfirmed. However, supporting evidence is mixed thus far and has only involved measuring responses to supposedly predicted nouns, not to preceding articles that may also be predicted. The current, large-sample (N = 200) ERP study on written discourse comprehension in Dutch therefore employs the well-known ‘pre-nominal prediction effect’: enhanced N400-like ERPs for articles that are unexpected given a likely upcoming noun’s gender (i.e., the neuter gender article ‘het’ when people expect the common gender noun phrase ‘de krant’, the newspaper) compared to expected articles. We investigated whether the pre-nominal prediction effect is larger when most of the presented stories contain predictable article-noun combinations (75% predictable, 25% unpredictable) compared to when most stories contain unpredictable combinations (25% predictable, 75% unpredictable). Our results show the pre-nominal prediction effect in both contexts, with little evidence to suggest that this effect depended on the percentage of predictable combinations. Moreover, the little evidence suggesting such a dependence was primarily observed for unexpected, neuter-gender articles (‘het’), which is inconsistent with the rational adaptation hypothesis. In line with recent demonstrations (Nieuwland, 2021a,b), our results suggest that linguistic prediction is less ‘rational’ or Bayes optimal than is often suggested.
  • Wang, M., Shao, Z., Verdonschot, R. G., Chen, Y., & Schiller, N. O. (2023). Orthography influences spoken word production in blocked cyclic naming. Psychonomic Bulletin & Review, 30, 383-392. doi:10.3758/s13423-022-02123-y.

    Abstract

    Does the way a word is written influence its spoken production? Previous studies suggest that orthography is involved only when the orthographic representation is highly relevant during speaking (e.g., in reading-aloud tasks). To address this issue, we carried out two experiments using the blocked cyclic picture-naming paradigm. In both experiments, participants were asked to name pictures repeatedly in orthographically homogeneous or heterogeneous blocks. In the naming task, the written form was not shown; however, the radical of the first character overlapped between the four pictures in this block type. A facilitative orthographic effect was found when picture names shared part of their written forms, compared with the heterogeneous condition. This facilitative effect was independent of the position of orthographic overlap (i.e., the left, the lower, or the outer part of the character). These findings strongly suggest that orthography can influence speaking even when it is not highly relevant (i.e., during picture naming) and the orthographic effect is less likely to be attributed to strategic preparation.
  • Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Naturalistic spoken language comprehension is supported by alpha and beta oscillations. The Journal of Neuroscience, 43(20), 3718-3732. doi:10.1523/JNEUROSCI.1500-22.2023.

    Abstract

    Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while β oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and β oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and β power from the dependency features. Results showed that dependency features predict α and β power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in β. Critically, α- and β-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-β responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and β oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.
  • Zora, H., Wester, J. M., & Csépe, V. (2023). Predictions about prosody facilitate lexical access: Evidence from P50/N100 and MMN components. International Journal of Psychophysiology, 194: 112262. doi:10.1016/j.ijpsycho.2023.112262.

    Abstract

    Research into the neural foundation of perception asserts a model where top-down predictions modulate the bottom-up processing of sensory input. Despite becoming increasingly influential in cognitive neuroscience, the precise account of this predictive coding framework remains debated. In this study, we aim to contribute to this debate by investigating how predictions about prosody facilitate speech perception, and to shed light especially on lexical access influenced by simultaneous predictions in different domains, inter alia, prosodic and semantic. Using a passive auditory oddball paradigm, we examined neural responses to prosodic changes, leading to a semantic change as in Dutch nouns canon [ˈkaːnɔn] ‘cannon’ vs kanon [kaːˈnɔn] ‘canon’, and used acoustically identical pseudowords as controls. Results from twenty-eight native speakers of Dutch (age range 18–32 years) indicated an enhanced P50/N100 complex to prosodic change in pseudowords as well as an MMN response to both words and pseudowords. The enhanced P50/N100 response to pseudowords is claimed to indicate that all relevant auditory information is still processed by the brain, whereas the reduced response to words might reflect the suppression of information that has already been encoded. The MMN response to pseudowords and words, on the other hand, is best justified by the unification of previously established prosodic representations with sensory and semantic input respectively. This pattern of results is in line with the predictive coding framework acting on multiple levels and is of crucial importance to indicate that predictions about linguistic prosodic information are utilized by the brain as early as 50 ms.
  • Acheson, D. J., Ganushchak, L. Y., Christoffels, I. K., & Hagoort, P. (2012). Conflict monitoring in speech production: Physiological evidence from bilingual picture naming. Brain and Language, 123, 131 -136. doi:10.1016/j.bandl.2012.08.008.

    Abstract

    Self-monitoring in production is critical to correct performance, and recent accounts suggest that such monitoring may occur via the detection of response conflict. The error-related negativity (ERN) is a response-locked event-related potential (ERP) that is sensitive to response conflict. The present study examines whether response conflict is detected in production by exploring a situation where multiple outputs are activated: the bilingual naming of form-related equivalents (i.e. cognates). ERPs were recorded while German-Dutch bilinguals named pictures in their first and second languages. Although cognates were named faster than non-cognates, response conflict was evident in the form of a larger ERN-like response for cognates and adaptation effects on naming, as the magnitude of cognate facilitation was smaller following the naming of cognates. Given that signals of response conflict are present during correct naming, the present results suggest that such conflict may serve as a reliable signal for monitoring in speech production.
  • Adank, P., Noordzij, M. L., & Hagoort, P. (2012). The role of planum temporale in processing accent variation in spoken language comprehension. Human Brain Mapping, 33, 360-372. doi:10.1002/hbm.21218.

    Abstract

    A repetition-suppression functional magnetic resonance imaging paradigm was used to explore the neuroanatomical substrates of processing two types of acoustic variation—speaker and accent—during spoken sentence comprehension. Recordings were made for two speakers and two accents: Standard Dutch and a novel accent of Dutch. Each speaker produced sentences in both accents. Participants listened to two sentences presented in quick succession while their haemodynamic responses were recorded in an MR scanner. The first sentence was spoken in Standard Dutch; the second was spoken by the same or a different speaker and produced in Standard Dutch or in the artificial accent. This design made it possible to identify neural responses to a switch in speaker and accent independently. A switch in accent was associated with activations in predominantly left-lateralized areas including posterior temporal regions, including superior temporal gyrus, planum temporale (PT), and supramarginal gyrus, as well as in frontal regions, including left pars opercularis of the inferior frontal gyrus (IFG). A switch in speaker recruited a predominantly right-lateralized network, including middle frontal gyrus and prenuneus. It is concluded that posterior temporal areas, including PT, and frontal areas, including IFG, are involved in processing accent variation in spoken sentence comprehension
  • Adank, P., Davis, M. H., & Hagoort, P. (2012). Neural dissociation in processing noise and accent in spoken language comprehension. Neuropsychologia, 50, 77-84. doi:10.1016/j.neuropsychologia.2011.10.024.

    Abstract

    We investigated how two distortions of the speech signal–added background noise and speech in an unfamiliar accent - affect comprehension of speech using functional Magnetic Resonance Imaging (fMRI). Listeners performed a speeded sentence verification task for speech in quiet in Standard Dutch, in Standard Dutch with added background noise, and for speech in an unfamiliar accent of Dutch. The behavioural results showed slower responses for both types of distortion compared to clear speech, and no difference between the two distortions. The neuroimaging results showed that, compared to clear speech, processing noise resulted in more activity bilaterally in Inferior Frontal Gyrus, Frontal Operculum, while processing accented speech recruited an area in left Superior Temporal Gyrus/Sulcus. It is concluded that the neural bases for processing different distortions of the speech signal dissociate. It is suggested that current models of the cortical organisation of speech are updated to specifically associate bilateral inferior frontal areas with processing external distortions (e.g., background noise) and left temporal areas with speaker-related distortions (e.g., accents).

    Additional information

    Adank_2012_Suppl_Info.doc
  • Araújo, S., Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2012). Electrophysiological correlates of impaired reading in dyslexic pre-adolescent children. Brain and Cognition, 79, 79-88. doi:10.1016/j.bandc.2012.02.010.

    Abstract

    In this study, event related potentials (ERPs) were used to investigate the extent to which dyslexics (aged 9–13 years) differ from normally reading controls in early ERPs, which reflect prelexical orthographic processing, and in late ERPs, which reflect implicit phonological processing. The participants performed an implicit reading task, which was manipulated in terms of letter-specific processing, orthographic familiarity, and phonological structure. Comparing consonant- and symbol sequences, the results showed significant differences in the P1 and N1 waveforms in the control but not in the dyslexic group. The reduced P1 and N1 effects in pre-adolescent children with dyslexia suggest a lack of visual specialization for letter-processing. The P1 and N1 components were not sensitive to the familiar vs. less familiar orthographic sequence contrast. The amplitude of the later N320 component was larger for phonologically legal (pseudowords) compared to illegal (consonant sequences) items in both controls and dyslexics. However, the topographic differences showed that the controls were more left-lateralized than the dyslexics. We suggest that the development of the mechanisms that support literacy skills in dyslexics is both delayed and follows a non-normal developmental path. This contributes to the hemispheric differences observed and might reflect a compensatory mechanism in dyslexics.
  • Baggio, G., & Fonseca, A. (2012). Complex dynamics of semantic memory access in reading. Interface: Journal of the Royal Society, 9, 328-338. doi:10.1098/rsif.2011.0289.

    Abstract

    Understanding a word in context relies on a cascade of perceptual and conceptual processes, starting with modality-specific input decoding, and leading to the unification of the word's meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into a meaningful linguistic sign, is the access of a semantic representation from memory. Little is known about the changes that activating a word's meaning brings about in cortical dynamics. We recorded the electroencephalogram (EEG) while participants read sentences that could contain a contextually unexpected word, such as ‘cold’ in ‘In July it is very cold outside’. We reconstructed trajectories in phase space from single-trial EEG time series, and we applied three nonlinear measures of predictability and complexity to each side of the semantic access boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative to controls, unexpected words were associated with larger prediction errors preceding the onset of the N400. Accessing the meaning of such words produced a phase transition to lower entropy states, in which cortical processing becomes more predictable and more regular. Our study sheds new light on the dynamics of information flow through interfaces between sensory and memory systems during language processing.
  • Baggio, G. (2012). Selective alignment of brain responses by task demands during semantic processing. Neuropsychologia, 50, 655-665. doi:10.1016/j.neuropsychologia.2012.01.002.

    Abstract

    The way the brain binds together words to form sentences may depend on whether and how the arising cognitive representation is to be used in behavior. The amplitude of the N400 effect in event-related brain potentials is inversely correlated with the degree of fit of a word's meaning into a semantic representation of the preceding discourse. This study reports a double dissociation in the latency characteristics of the N400 effect depending on task demands. When participants silently read words in a sentence context, without issuing a relevant overt response, greater temporal alignment over recording sites occurs for N400 onsets than peaks. If however a behavior is produced – here pressing a button in a binary probe selection task – exactly the opposite pattern is observed, with stronger alignment of N400 peaks than onsets. The peak amplitude of the N400 effect correlates best with the latency characteristic showing less temporal dispersion. These findings suggest that meaning construction in the brain is subtly affected by task demands, and that there is complex functional integration between semantic combinatorics and control systems handling behavioral goals.
  • Bosman, C., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A., Womelsdorf, T., Rubehn, B., Stieglitz, T., De Weerd, P., & Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 75(5), 875-888. doi:10.1016/j.neuron.2012.06.037.

    Abstract

    A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma synchronized (60-80 Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of interareal coherence. The relevant V1 site had its gamma peak frequency 2-3 Hz higher than the irrelevant V1 site and 4-6 Hz higher than V4. Gamma-mediated interareal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity.
  • Bramão, I., Francisco, A., Inácio, F., Faísca, L., Reis, A., & Petersson, K. M. (2012). Electrophysiological evidence for colour effects on the naming of colour diagnostic and noncolour diagnostic objects. Visual Cognition, 20, 1164-1185. doi:10.1080/13506285.2012.739215.

    Abstract

    In this study, we investigated the level of visual processing at which surface colour information improves the naming of colour diagnostic and noncolour diagnostic objects. Continuous electroencephalograms were recorded while participants performed a visual object naming task in which coloured and black-and-white versions of both types of objects were presented. The black-and-white and the colour presentations were compared in two groups of event-related potentials (ERPs): (1) The P1 and N1 components, indexing early visual processing; and (2) the N300 and N400 components, which index late visual processing. A colour effect was observed in the P1 and N1 components, for both colour and noncolour diagnostic objects. In addition, for colour diagnostic objects, a colour effect was observed in the N400 component. These results suggest that colour information is important for the naming of colour and noncolour diagnostic objects at different levels of visual processing. It thus appears that the visual system uses colour information, during naming of both object types, at early visual stages; however, for the colour diagnostic objects naming, colour information is also recruited during the late visual processing stages.
  • Bramão, I., Faísca, L., Forkstam, C., Inácio, F., Araújo, S., Petersson, K. M., & Reis, A. (2012). The interaction between surface color and color knowledge: Behavioral and electrophysiological evidence. Brain and Cognition, 78, 28-37. doi:10.1016/j.bandc.2011.10.004.

    Abstract

    In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks – a surface and a knowledge verification task – using high color diagnostic objects; both typical and atypical color versions of the same object were presented. Continuous electroencephalogram was recorded from 26 subjects. A cluster randomization procedure was used to explore the differences between typical and atypical color objects in each task. In the color knowledge task, we found two significant clusters that were consistent with the N350 and late positive complex (LPC) effects. Atypical color objects elicited more negative ERPs compared to typical color objects. The color effect found in the N350 time window suggests that surface color is an important cue that facilitates the selection of a stored object representation from long-term memory. Moreover, the observed LPC effect suggests that surface color activates associated semantic knowledge about the object, including color knowledge representations. We did not find any significant differences between typical and atypical color objects in the surface color verification task, which indicates that there is little contribution of color knowledge to resolve the surface color verification. Our main results suggest that surface color is an important visual cue that triggers color knowledge, thereby facilitating object identification.
  • Brookshire, G., & Casasanto, D. (2012). Motivation and motor control: Hemispheric specialization for approach motivation reverses with handedness. PLoS One, 7(4), e36036. doi:10.1371/journal.pone.0036036.

    Abstract

    Background: According to decades of research on affective motivation in the human brain, approach motivational states are supported primarily by the left hemisphere and avoidance states by the right hemisphere. The underlying cause of this specialization, however, has remained unknown. Here we conducted a first test of the Sword and Shield Hypothesis (SSH), according to which the hemispheric laterality of affective motivation depends on the laterality of motor control for the dominant hand (i.e., the "sword hand," used preferentially to perform approach actions) and the nondominant hand (i.e., the "shield hand," used preferentially to perform avoidance actions). Methodology/Principal Findings: To determine whether the laterality of approach motivation varies with handedness, we measured alpha-band power (an inverse index of neural activity) in right- and left-handers during resting-state electroencephalography and analyzed hemispheric alpha-power asymmetries as a function of the participants' trait approach motivational tendencies. Stronger approach motivation was associated with more left-hemisphere activity in right-handers, but with more right-hemisphere activity in left-handers. Conclusions: The hemispheric correlates of approach motivation reversed between right- and left-handers, consistent with the way they typically use their dominant and nondominant hands to perform approach and avoidance actions. In both right- and left-handers, approach motivation was lateralized to the same hemisphere that controls the dominant hand. This covariation between neural systems for action and emotion provides initial support for the SSH
  • Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: Rethinking the functional role of the P600 in language comprehension. Brain Research, 1446, 127-143. doi:10.1016/j.brainres.2012.01.055.

    Abstract

    In traditional theories of language comprehension, syntactic and semantic processing are inextricably linked. This assumption has been challenged by the ‘Semantic Illusion Effect’ found in studies using Event Related brain Potentials. Semantically anomalous sentences did not produce the expected increase in N400 amplitude but rather one in P600 amplitude. To explain these findings, complex models have been devised in which an independent semantic processing stream can arrive at a sentence interpretation that may differ from the interpretation prescribed by the syntactic structure of the sentence. We review five such multi-stream models and argue that they do not account for the full range of relevant results because they assume that the amplitude of the N400 indexes some form of semantic integration. Based on recent evidence we argue that N400 amplitude might reflect the retrieval of lexical information from memory. On this view, the absence of an N400-effect in Semantic Illusion sentences can be explained in terms of priming. Furthermore, we suggest that semantic integration, which has previously been linked to the N400 component, might be reflected in the P600 instead. When combined, these functional interpretations result in a single-stream account of language processing that can explain all of the Semantic Illusion data.
  • Casasanto, D., & Henetz, T. (2012). Handedness shapes children’s abstract concepts. Cognitive Science, 36, 359-372. doi:10.1111/j.1551-6709.2011.01199.x.

    Abstract

    Can children’s handedness influence how they represent abstract concepts like kindness and intelligence? Here we show that from an early age, right-handers associate rightward space more strongly with positive ideas and leftward space with negative ideas, but the opposite is true for left-handers. In one experiment, children indicated where on a diagram a preferred toy and a dispreferred toy should go. Right-handers tended to assign the preferred toy to a box on the right and the dispreferred toy to a box on the left. Left-handers showed the opposite pattern. In a second experiment, children judged which of two cartoon animals looked smarter (or dumber) or nicer (or meaner). Right-handers attributed more positive qualities to animals on the right, but left-handers to animals on the left. These contrasting associations between space and valence cannot be explained by exposure to language or cultural conventions, which consistently link right with good. Rather, right- and left-handers implicitly associated positive valence more strongly with the side of space on which they can act more fluently with their dominant hands. Results support the body-specificity hypothesis (Casasanto, 2009), showing that children with different kinds of bodies think differently in corresponding ways.
  • Chang, F., Janciauskas, M., & Fitz, H. (2012). Language adaptation and learning: Getting explicit about implicit learning. Language and Linguistics Compass, 6, 259-278. doi:10.1002/lnc3.337.

    Abstract

    Linguistic adaptation is a phenomenon where language representations change in response to linguistic input. Adaptation can occur on multiple linguistic levels such as phonology (tuning of phonotactic constraints), words (repetition priming), and syntax (structural priming). The persistent nature of these adaptations suggests that they may be a form of implicit learning and connectionist models have been developed which instantiate this hypothesis. Research on implicit learning, however, has also produced evidence that explicit chunk knowledge is involved in the performance of these tasks. In this review, we examine how these interacting implicit and explicit processes may change our understanding of language learning and processing.
  • Chu, M., & Kita, S. (2012). The nature of the beneficial role of spontaneous gesture in spatial problem solving [Abstract]. Cognitive Processing; Special Issue "ICSC 2012, the 5th International Conference on Spatial Cognition: Space and Embodied Cognition". Oral Presentations, 13(Suppl. 1), S39.

    Abstract

    Spontaneous gestures play an important role in spatial problem solving. We investigated the functional role and underlying mechanism of spontaneous gestures in spatial problem solving. In Experiment 1, 132 participants were required to solve a mental rotation task (see Figure 1) without speaking. Participants gestured more frequently in difficult trials than in easy trials. In Experiment 2, 66 new participants were given two identical sets of mental rotation tasks problems, as the one used in experiment 1. Participants who were encouraged to gesture in the first set of mental rotation task problemssolved more problems correctly than those who were allowed to gesture or those who were prohibited from gesturing both in the first set and in the second set in which all participants were prohibited from gesturing. The gestures produced by the gestureencouraged group and the gesture-allowed group were not qualitatively different. In Experiment 3, 32 new participants were first given a set of mental rotation problems and then a second set of nongesturing paper folding problems. The gesture-encouraged group solved more problems correctly in the first set of mental rotation problems and the second set of non-gesturing paper folding problems. We concluded that gesture improves spatial problem solving. Furthermore, gesture has a lasting beneficial effect even when gesture is not available and the beneficial effect is problem-general.We suggested that gesture enhances spatial problem solving by provide a rich sensori-motor representation of the physical world and pick up information that is less readily available to visuo-spatial processes.
  • Connell, L., Cai, Z. G., & Holler, J. (2012). Do you see what I'm singing? Visuospatial movement biases pitch perception. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 252-257). Austin, TX: Cognitive Science Society.

    Abstract

    The nature of the connection between musical and spatial processing is controversial. While pitch may be described in spatial terms such as “high” or “low”, it is unclear whether pitch and space are associated but separate dimensions or whether they share representational and processing resources. In the present study, we asked participants to judge whether a target vocal note was the same as (or different from) a preceding cue note. Importantly, target trials were presented as video clips where a singer sometimes gestured upward or downward while singing that target note, thus providing an alternative, concurrent source of spatial information. Our results show that pitch discrimination was significantly biased by the spatial movement in gesture. These effects were eliminated by spatial memory load but preserved under verbal memory load conditions. Together, our findings suggest that pitch and space have a shared representation such that the mental representation of pitch is audiospatial in nature.
  • Cristia, A., & Peperkamp, S. (2012). Generalizing without encoding specifics: Infants infer phonotactic patterns on sound classes. In A. K. Biller, E. Y. Chung, & A. E. Kimball (Eds.), Proceedings of the 36th Annual Boston University Conference on Language Development (BUCLD 36) (pp. 126-138). Somerville, Mass.: Cascadilla Press.

    Abstract

    publication expected April 2012
  • Cristia, A., Seidl, A., Vaughn, C., Schmale, R., Bradlow, A., & Floccia, C. (2012). Linguistic processing of accented speech across the lifespan. Frontiers in Psychology, 3, 479. doi:10.3389/fpsyg.2012.00479.

    Abstract

    In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work.
  • Demir, Ö. E., So, W.-C., Ozyurek, A., & Goldin-Meadow, S. (2012). Turkish- and English-speaking children display sensitivity to perceptual context in referring expressions they produce in speech and gesture. Language and Cognitive Processes, 27, 844 -867. doi:10.1080/01690965.2011.589273.

    Abstract

    Speakers choose a particular expression based on many factors, including availability of the referent in the perceptual context. We examined whether, when expressing referents, monolingual English- and Turkish-speaking children: (1) are sensitive to perceptual context, (2) express this sensitivity in language-specific ways, and (3) use co-speech gestures to specify referents that are underspecified. We also explored the mechanisms underlying children's sensitivity to perceptual context. Children described short vignettes to an experimenter under two conditions: The characters in the vignettes were present in the perceptual context (perceptual context); the characters were absent (no perceptual context). Children routinely used nouns in the no perceptual context condition, but shifted to pronouns (English-speaking children) or omitted arguments (Turkish-speaking children) in the perceptual context condition. Turkish-speaking children used underspecified referents more frequently than English-speaking children in the perceptual context condition; however, they compensated for the difference by using gesture to specify the forms. Gesture thus gives children learning structurally different languages a way to achieve comparable levels of specification while at the same time adhering to the referential expressions dictated by their language.
  • Dimitrova, D. V., Stowe, L. A., Redeker, G., & Hoeks, J. C. J. (2012). Less is not more: Neural responses to missing and superfluous accents in context. Journal of Cognitive Neuroscience, 24, 2400-2418. doi:10.1162/jocn_a_00302.

    Abstract

    Prosody, particularly accent, aids comprehension by drawing attention to important elements such as the information that answers a question. A study using ERP registration investigated how the brain deals with the interpretation of prosodic prominence. Sentences were embedded in short dialogues and contained accented elements that were congruous or incongruous with respect to a preceding question. In contrast to previous studies, no explicit prosodic judgment task was added. Robust effects of accentuation were evident in the form of an “accent positivity” (200–500 msec) for accented elements irrespective of their congruity. Our results show that incongruously accented elements, that is, superfluous accents, activate a specific set of neural systems that is inactive in case of incongruously unaccented elements, that is, missing accents. Superfluous accents triggered an early positivity around 100 msec poststimulus, followed by a right-lateralized negative effect (N400). This response suggests that redundant information is identified immediately and leads to the activation of a neural system that is associated with semantic processing (N400). No such effects were found when contextually expected accents were missing. In a later time window, both missing and superfluous accents triggered a late positivity on midline electrodes, presumably related to making sense of both kinds of mismatching stimuli. These results challenge previous findings of greater processing for missing accents and suggest that the natural processing of prosody involves a set of distinct, temporally organized neural systems.
  • Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2012). The sound of thickness: Prelinguistic infants' associations of space and pitch. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 306-311). Austin, TX: Cognitive Science Society.

    Abstract

    People often talk about musical pitch in terms of spatial metaphors. In English, for instance, pitches can be high or low, whereas in other languages pitches are described as thick or thin. According to psychophysical studies, metaphors in language can also shape people’s nonlinguistic space-pitch representations. But does language establish mappings between space and pitch in the first place or does it modify preexisting associations? Here we tested 4-month-old Dutch infants’ sensitivity to height-pitch and thickness-pitch mappings in two preferential looking tasks. Dutch infants looked significantly longer at cross-modally congruent stimuli in both experiments, indicating that infants are sensitive to space-pitch associations prior to language. This early presence of space-pitch mappings suggests that these associations do not originate from language. Rather, language may build upon pre-existing mappings and change them gradually via some form of competitive associative learning.
  • Fessler, D. M., Stieger, S., Asaridou, S. S., Bahia, U., Cravalho, M., de Barros, P., Delgado, T., Fisher, M. L., Frederick, D., Perez, P. G., Goetz, C., Haley, K., Jackson, J., Kushnick, G., Lew, K., Pain, E., Florindo, P. P., Pisor, A., Sinaga, E., Sinaga, L. and 3 moreFessler, D. M., Stieger, S., Asaridou, S. S., Bahia, U., Cravalho, M., de Barros, P., Delgado, T., Fisher, M. L., Frederick, D., Perez, P. G., Goetz, C., Haley, K., Jackson, J., Kushnick, G., Lew, K., Pain, E., Florindo, P. P., Pisor, A., Sinaga, E., Sinaga, L., Smolich, L., Sun, D. M., & Voracek, M. (2012). Testing a postulated case of intersexual selection in humans: The role of foot size in judgments of physical attractiveness and age. Evolution and Human Behavior, 33, 147-164. doi:10.1016/j.evolhumbehav.2011.08.002.

    Abstract

    The constituents of attractiveness differ across the sexes. Many relevant traits are dimorphic, suggesting that they are the product of intersexual selection. However, direction of causality is generally difficult to determine, as aesthetic criteria can as readily result from, as cause, dimorphism. Women have proportionately smaller feet than men. Prior work on the role of foot size in attractiveness suggests an asymmetry across the sexes, as small feet enhance female appearance, yet average, rather than large, feet are preferred on men. Previous investigations employed crude stimuli and limited samples. Here, we report on multiple cross-cultural studies designed to overcome these limitations. With the exception of one rural society, we find that small foot size is preferred when judging women, yet no equivalent preference applies to men. Similarly, consonant with the thesis that a preference for youth underlies intersexual selection acting on women, we document an inverse relationship between foot size and perceived age. Examination of preferences regarding, and inferences from, feet viewed in isolation suggests different roles for proportionality and absolute size in judgments of female and male bodies. Although the majority of these results bolster the conclusion that pedal dimorphism is the product of intersexual selection, the picture is complicated by the reversal of the usual preference for small female feet found in one rural society. While possibly explicable in terms of greater emphasis on female economic productivity relative to beauty, the latter finding underscores the importance of employing diverse samples when exploring postulated evolved aesthetic preferences.

    Additional information

    Fessler_2011_Suppl_material.pdf
  • Fitch, W. T., Friederici, A. D., & Hagoort, P. (2012). Pattern perception and computational complexity: Introduction to the special issue. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367 (1598), 1925-1932. doi:10.1098/rstb.2012.0099.

    Abstract

    Research on pattern perception and rule learning, grounded in formal language theory (FLT) and using artificial grammar learning paradigms, has exploded in the last decade. This approach marries empirical research conducted by neuroscientists, psychologists and ethologists with the theory of computation and FLT, developed by mathematicians, linguists and computer scientists over the last century. Of particular current interest are comparative extensions of this work to non-human animals, and neuroscientific investigations using brain imaging techniques. We provide a short introduction to the history of these fields, and to some of the dominant hypotheses, to help contextualize these ongoing research programmes, and finally briefly introduce the papers in the current issue.
  • Fonteijn, H. M., Modat, M., Clarkson, M. J., Barnes, J., Lehmann, M., Hobbs, N. Z., Scahill, R. I., Tabrizi, S. J., Ourselin, S., Fox, N. C., & Alexander, D. C. (2012). An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease. NeuroImage, 60, 1880-1889. doi:10.1016/j.neuroimage.2012.01.062.

    Abstract

    Understanding the progression of neurological diseases is vital for accurate and early diagnosis and treatment planning. We introduce a new characterization of disease progression, which describes the disease as a series of events, each comprising a significant change in patient state. We provide novel algorithms to learn the event ordering from heterogeneous measurements over a whole patient cohort and demonstrate using combined imaging and clinical data from familial-Alzheimer's and Huntington's disease cohorts. Results provide new detail in the progression pattern of these diseases, while confirming known features, and give unique insight into the variability of progression over the cohort. The key advantage of the new model and algorithms over previous progression models is that they do not require a priori division of the patients into clinical stages. The model and its formulation extend naturally to a wide range of other diseases and developmental processes and accommodate cross-sectional and longitudinal input data.
  • De la Fuente, J., Santiago, J., Roma, A., Dumitrache, C., & Casasanto, D. (2012). Facing the past: cognitive flexibility in the front-back mapping of time [Abstract]. Cognitive Processing; Special Issue "ICSC 2012, the 5th International Conference on Spatial Cognition: Space and Embodied Cognition". Poster Presentations, 13(Suppl. 1), S58.

    Abstract

    In many languages the future is in front and the past behind, but in some cultures (like Aymara) the past is in front. Is it possible to find this mapping as an alternative conceptualization of time in other cultures? If so, what are the factors that affect its choice out of the set of available alternatives? In a paper and pencil task, participants placed future or past events either in front or behind a character (a schematic head viewed from above). A sample of 24 Islamic participants (whose language also places the future in front and the past behind) tended to locate the past event in the front box more often than Spanish participants. This result might be due to the greater cultural value assigned to tradition in Islamic culture. The same pattern was found in a sample of Spanish elders (N = 58), what may support that conclusion. Alternatively, the crucial factor may be the amount of attention paid to the past. In a final study, young Spanish adults (N = 200) who had just answered a set of questions about their past showed the past-in-front pattern, whereas questions about their future exacerbated the future-in-front pattern. Thus, the attentional explanation was supported: attended events are mapped to front space in agreement with the experiential connection between attending and seeing. When attention is paid to the past, it tends to occupy the front location in spite of available alternative mappings in the language-culture.
  • Hagoort, P. (2012). Het muzikale brein. Speling: Tijdschrift voor bezinning. Muziek als bron van bezieling, 64(1), 44-48.
  • Hagoort, P. (2012). Het sprekende brein. MemoRad, 17(1), 27-30.

    Abstract

    Geen andere soort dan homo sapiens heeft in de loop van zijn evolutionaire geschiedenis een communicatiesysteem ontwikkeld waarin een eindig aantal symbolen samen met een reeks van regels voor het combineren daarvan een oneindig aantal uitdrukkingen mogelijk maakt. Dit natuurlijke taalsysteem stelt leden van onze soort in staat gedachten een uiterlijke vorm te geven en uit te wisselen met de sociale groep en, door de uitvinding van schriftsystemen, met de gehele samenleving. Spraak en taal zijn effectieve middelen voor het behoud van sociale cohesie in samenlevingen waarvan de groepsgrootte en de complexe sociale organisatie van dien aard is dat dit niet langer kan door middel van ‘vlooien’, de wijze waarop onze genetische buren, de primaten van de oude wereld, sociale cohesie bevorderen [1,2].
  • Hanulikova, A., Dediu, D., Fang, Z., Basnakova, J., & Huettig, F. (2012). Individual differences in the acquisition of a complex L2 phonology: A training study. Language Learning, 62(Supplement S2), 79-109. doi:10.1111/j.1467-9922.2012.00707.x.

    Abstract

    Many learners of a foreign language (L2) struggle to correctly pronounce newly-learned speech sounds, yet many others achieve this with apparent ease. Here we explored how a training study of learning complex consonant clusters at the very onset of the L2 acquisition can inform us about L2 learning in general and individual differences in particular. To this end, adult Dutch native speakers were trained on Slovak words with complex consonant clusters (e.g., pstruh /pstrux/‘trout’, štvrť /ʃtvrc/ ‘quarter’) using auditory and orthographic input. In the same session following training, participants were tested on a battery of L2 perception and production tasks. The battery of L2 tests was repeated twice more with one week between each session. In the first session, an additional battery of control tests was used to test participants’ native language (L1) skills. Overall, in line with some previous research, participants showed only weak learning effects across the L2 perception tasks. However, there were considerable individual differences across all L2 tasks, which remained stable across sessions. Only two participants showed overall high L2 production performance that fell within 2 standard deviations of the mean ratings obtained for an L1 speaker. The mispronunciation detection task was the only perception task which significantly predicted production performance in the final session. We conclude by discussing several recommendations for future L2 learning studies.
  • Hanulikova, A., Van Alphen, P. M., Van Goch, M. M., & Weber, A. (2012). When one person’s mistake is another’s standard usage: The effect of foreign accent on syntactic processing. Journal of Cognitive Neuroscience, 24(4), 878-887. doi:10.1162/jocn_a_00103.

    Abstract

    How do native listeners process grammatical errors that are frequent in non-native speech? We investigated whether the neural correlates of syntactic processing are modulated by speaker identity. ERPs to gender agreement errors in sentences spoken by a native speaker were compared with the same errors spoken by a non-native speaker. In line with previous research, gender violations in native speech resulted in a P600 effect (larger P600 for violations in comparison with correct sentences), but when the same violations were produced by the non-native speaker with a foreign accent, no P600 effect was observed. Control sentences with semantic violations elicited comparable N400 effects for both the native and the non-native speaker, confirming no general integration problem in foreign-accented speech. The results demonstrate that the P600 is modulated by speaker identity, extending our knowledge about the role of speaker's characteristics on neural correlates of speech processing.
  • Holler, J., Kelly, S., Hagoort, P., & Ozyurek, A. (2012). When gestures catch the eye: The influence of gaze direction on co-speech gesture comprehension in triadic communication. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 467-472). Austin, TX: Cognitive Society. Retrieved from http://mindmodeling.org/cogsci2012/papers/0092/index.html.

    Abstract

    Co-speech gestures are an integral part of human face-to-face communication, but little is known about how pragmatic factors influence our comprehension of those gestures. The present study investigates how different types of recipients process iconic gestures in a triadic communicative situation. Participants (N = 32) took on the role of one of two recipients in a triad and were presented with 160 video clips of an actor speaking, or speaking and gesturing. Crucially, the actor’s eye gaze was manipulated in that she alternated her gaze between the two recipients. Participants thus perceived some messages in the role of addressed recipient and some in the role of unaddressed recipient. In these roles, participants were asked to make judgements concerning the speaker’s messages. Their reaction times showed that unaddressed recipients did comprehend speaker’s gestures differently to addressees. The findings are discussed with respect to automatic and controlled processes involved in gesture comprehension.
  • Jasmin, K., & Casasanto, D. (2012). The QWERTY Effect: How typing shapes the meanings of words. Psychonomic Bulletin & Review, 19, 499-504. doi:10.3758/s13423-012-0229-7.

    Abstract

    The QWERTY keyboard mediates communication for millions of language users. Here, we investigated whether differences in the way words are typed correspond to differences in their meanings. Some words are spelled with more letters on the right side of the keyboard and others with more letters on the left. In three experiments, we tested whether asymmetries in the way people interact with keys on the right and left of the keyboard influence their evaluations of the emotional valence of the words. We found the predicted relationship between emotional valence and QWERTY key position across three languages (English, Spanish, and Dutch). Words with more right-side letters were rated as more positive in valence, on average, than words with more left-side letters: the QWERTY effect. This effect was strongest in new words coined after QWERTY was invented and was also found in pseudowords. Although these data are correlational, the discovery of a similar pattern across languages, which was strongest in neologisms, suggests that the QWERTY keyboard is shaping the meanings of words as people filter language through their fingers. Widespread typing introduces a new mechanism by which semanntic changes in language can arise.
  • Junge, C., Cutler, A., & Hagoort, P. (2012). Electrophysiological evidence of early word learning. Neuropsychologia, 50, 3702-3712. doi:10.1016/j.neuropsychologia.2012.10.012.

    Abstract

    Around their first birthday infants begin to talk, yet they comprehend words long before. This study investigated the event-related potentials (ERP) responses of nine-month-olds on basic level picture-word pairings. After a familiarization phase of six picture-word pairings per semantic category, comprehension for novel exemplars was tested in a picture-word matching paradigm. ERPs time-locked to pictures elicited a modulation of the Negative Central (Nc) component, associated with visual attention and recognition. It was attenuated by category repetition as well as by the type-token ratio of picture context. ERPs time-locked to words in the training phase became more negative with repetition (N300-600), but there was no influence of picture type-token ratio, suggesting that infants have identified the concept of each picture before a word was presented. Results from the test phase provided clear support that infants integrated word meanings with (novel) picture context. Here, infants showed different ERP responses for words that did or did not align with the picture context: a phonological mismatch (N200) and a semantic mismatch (N400). Together, results were informative of visual categorization, word recognition and word-to-world-mappings, all three crucial processes for vocabulary construction.
  • Junge, C., Kooijman, V., Hagoort, P., & Cutler, A. (2012). Rapid recognition at 10 months as a predictor of language development. Developmental Science, 15, 463-473. doi:10.1111/j.1467-7687.2012.1144.x.

    Abstract

    Infants’ ability to recognize words in continuous speech is vital for building a vocabulary.We here examined the amount and type
    of exposure needed for 10-month-olds to recognize words. Infants first heard a word, either embedded within an utterance or in
    isolation, then recognition was assessed by comparing event-related potentials to this word versus a word that they had not heard
    directly before. Although all 10-month-olds showed recognition responses to words first heard in isolation, not all infants showed
    such responses to words they had first heard within an utterance. Those that did succeed in the latter, harder, task, however,
    understood more words and utterances when re-tested at 12 months, and understood more words and produced more words at
    24 months, compared with those who had shown no such recognition response at 10 months. The ability to rapidly recognize the
    words in continuous utterances is clearly linked to future language development.
  • Kelly, S., Healey, M., Ozyurek, A., & Holler, J. (2012). The communicative influence of gesture and action during speech comprehension: Gestures have the upper hand [Abstract]. Abstracts of the Acoustics 2012 Hong Kong conference published in The Journal of the Acoustical Society of America, 131, 3311. doi:10.1121/1.4708385.

    Abstract

    Hand gestures combine with speech to form a single integrated system of meaning during language comprehension (Kelly et al., 2010). However, it is unknown whether gesture is uniquely integrated with speech or is processed like any other manual action. Thirty-one participants watched videos presenting speech with gestures or manual actions on objects. The relationship between the speech and gesture/action was either complementary (e.g., “He found the answer,” while producing a calculating gesture vs. actually using a calculator) or incongruent (e.g., the same sentence paired with the incongruent gesture/action of stirring with a spoon). Participants watched the video (prime) and then responded to a written word (target) that was or was not spoken in the video prime (e.g., “found” or “cut”). ERPs were taken to the primes (time-locked to the spoken verb, e.g., “found”) and the written targets. For primes, there was a larger frontal N400 (semantic processing) to incongruent vs. congruent items for the gesture, but not action, condition. For targets, the P2 (phonemic processing) was smaller for target words following congruent vs. incongruent gesture, but not action, primes. These findings suggest that hand gestures are integrated with speech in a privileged fashion compared to manual actions on objects.
  • Kempen, G., Olsthoorn, N., & Sprenger, S. (2012). Grammatical workspace sharing during language production and language comprehension: Evidence from grammatical multitasking. Language and Cognitive Processes, 27, 345-380. doi:10.1080/01690965.2010.544583.

    Abstract

    Grammatical encoding and grammatical decoding (in sentence production and comprehension, respectively) are often portrayed as independent modalities of grammatical performance that only share declarative resources: lexicon and grammar. The processing resources subserving these modalities are supposed to be distinct. In particular, one assumes the existence of two workspaces where grammatical structures are assembled and temporarily maintained—one for each modality. An alternative theory holds that the two modalities share many of their processing resources and postulates a single mechanism for the online assemblage and short-term storage of grammatical structures: a shared workspace. We report two experiments with a novel “grammatical multitasking” paradigm: the participants had to read (i.e., decode) and to paraphrase (encode) sentences presented in fragments, responding to each input fragment as fast as possible with a fragment of the paraphrase. The main finding was that grammatical constraints with respect to upcoming input that emanate from decoded sentence fragments are immediately replaced by grammatical expectations emanating from the structure of the corresponding paraphrase fragments. This evidences that the two modalities have direct access to, and operate upon, the same (i.e., token-identical) grammatical structures. This is possible only if the grammatical encoding and decoding processes command the same, shared grammatical workspace. Theoretical implications for important forms of grammatical multitasking—self-monitoring, turn-taking in dialogue, speech shadowing, and simultaneous translation—are explored.
  • Kim, A., & Lai, V. T. (2012). Rapid interactions between lexical semantic and word form analysis during word recognition in context: Evidence from ERPs. Journal of Cognitive Neuroscience, 24, 1104-1112. doi:10.1162/jocn_a_00148.

    Abstract

    We used event-related potentials (ERPs) to investigate the timecourse of interactions between lexical-semantic and sub-lexical visual word-form processing during word recognition. Participants read sentence-embedded pseudowords that orthographically resembled a contextually-supported real word (e.g., “She measured the flour so she could bake a ceke …”) or did not (e.g., “She measured the flour so she could bake a tont …”) along with nonword consonant strings (e.g., “She measured the flour so she could bake a srdt …”). Pseudowords that resembled a contextually-supported real word (“ceke”) elicited an enhanced positivity at 130 msec (P130), relative to real words (e.g., “She measured the flour so she could bake a cake …”). Pseudowords that did not resemble a plausible real word (“tont”) enhanced the N170 component, as did nonword consonant strings (“srdt”). The effect pattern shows that the visual word recognition system is, perhaps counterintuitively, more rapidly sensitive to minor than to flagrant deviations from contextually-predicted inputs. The findings are consistent with rapid interactions between lexical and sub-lexical representations during word recognition, in which rapid lexical access of a contextually-supported word (CAKE) provides top-down excitation of form features (“cake”), highlighting the anomaly of an unexpected word “ceke”.
  • Kos, M., Van den Brink, D., Snijders, T. M., Rijpkema, M., Franke, B., Fernandez, G., Hagoort, P., & Whitehouse, A. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLoS One, 7(10), e46995. doi:10.1371/journal.pone.0046995.

    Abstract

    The genetic FOXP2-CNTNAP2 pathway has been shown to be involved in the language capacity. We investigated whether a common variant of CNTNAP2 (rs7794745) is relevant for syntactic and semantic processing in the general population by using a visual sentence processing paradigm while recording ERPs in 49 healthy adults. While both AA homozygotes and T-carriers showed a standard N400 effect to semantic anomalies, the response to subject-verb agreement violations differed across genotype groups. T-carriers displayed an anterior negativity preceding the P600 effect, whereas for the AA group only a P600 effect was observed. These results provide another piece of evidence that the neuronal architecture of the human faculty of language is shaped differently by effects that are genetically determined.
  • Kos, M., Van den Brink, D., & Hagoort, P. (2012). Individual variation in the late positive complex to semantic anomalies. Frontiers in Psychology, 3, 318. doi:10.3389/fpsyg.2012.00318.

    Abstract

    It is well-known that, within ERP paradigms of sentence processing, semantically anomalous words elicit N400 effects. Less clear, however, is what happens after the N400. In some cases N400 effects are followed by Late Positive Complexes (LPC), whereas in other cases such effects are lacking. We investigated several factors which could affect the LPC, such as contextual constraint, inter-individual variation and working memory. Seventy-two participants read sentences containing a semantic manipulation (Whipped cream tastes sweet/anxious and creamy). Neither contextual constraint nor working memory correlated with the LPC. Inter-individual variation played a substantial role in the elicitation of the LPC with about half of the participants showing a negative response and the other half showing an LPC. This individual variation correlated with a syntactic ERP as well as an alternative semantic manipulation. In conclusion, our results show that inter-individual variation plays a large role in the elicitation of the LPC and this may account for the diversity in LPC findings in language research.
  • Lai, V. T., Hagoort, P., & Casasanto, D. (2012). Affective primacy vs. cognitive primacy: Dissolving the debate. Frontiers in Psychology, 3, 243. doi:10.3389/fpsyg.2012.00243.

    Abstract

    When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective information has priority, and its activation can precede identification of the ontological category of a stimulus. Alternatively, according to the Cognitive Primacy Hypothesis, perceivers must know what they are looking at before they can make an affective judgment about it. We propose that neither hypothesis holds at all times. Here we show that the relative speed with which affective and non-affective information gets activated by pictures and words depends upon the contexts in which stimuli are processed. Results illustrate that the question of whether affective information has processing priority over ontological information (or vice versa) is ill posed. Rather than seeking to resolve the debate over Cognitive vs. Affective Primacy in favor of one hypothesis or the other, a more productive goal may be to determine the factors that cause affective information to have processing priority in some circumstances and ontological information in others. Our findings support a view of the mind according to which words and pictures activate different neurocognitive representations every time they are processed, the specifics of which are co-determined by the stimuli themselves and the contexts in which they occur.
  • Lehtonen, M., Hulten, A., Rodríguez-Fornells, A., Cunillera, T., Tuomainen, J., & Laine, M. (2012). Differences in word recognition between early bilinguals and monolinguals: Behavioral and ERP evidence. Neuropsychologia, 50, 1362-1371. doi:10.1016/j.neuropsychologia.2012.02.021.

    Abstract

    We investigated the behavioral and brain responses (ERPs) of bilingual word recognition to three fundamental psycholinguistic factors, frequency, morphology, and lexicality, in early bilinguals vs. monolinguals. Earlier behavioral studies have reported larger frequency effects in bilingualś nondominant vs. dominant language and in some studies also when compared to corresponding monolinguals. In ERPs, language processing differences between bilinguals vs. monolinguals have typically been found in the N400 component. In the present study, highly proficient Finnish-Swedish bilinguals who had acquired both languages during childhood were compared to Finnish monolinguals during a visual lexical decision task and simultaneous ERP recordings. Behaviorally, we found that the response latencies were overall longer in bilinguals than monolinguals, and that the effects for all three factors, frequency, morphology, and lexicality were also larger in bilinguals even though they had acquired both languages early and were highly proficient in them. In line with this, the N400 effects induced by frequency, morphology, and lexicality were larger for bilinguals than monolinguals. Furthermore, the ERP results also suggest that while most inflected Finnish words are decomposed into stem and suffix, only monolinguals have encountered high frequency inflected word forms often enough to develop full-form representations for them. Larger behavioral and neural effects in bilinguals in these factors likely reflect lower amount of exposure to words compared to monolinguals, as the language input of bilinguals is divided between two languages.
  • Mellem, M. S., Bastiaansen, M. C. M., Pilgrim, L. K., Medvedev, A. V., & Friedman, R. B. (2012). Word class and context affect alpha-band oscillatory dynamics in an older population. Frontiers in Psychology, 3, 97. doi:10.3389/fpsyg.2012.00097.

    Abstract

    Differences in the oscillatory EEG dynamics of reading open class (OC) and closed class (CC) words have previously been found (Bastiaansen et al., 2005) and are thought to reflect differences in lexical-semantic content between these word classes. In particular, the theta-band (4–7 Hz) seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underlying retrieval for the two different classes of words. Older participants (mean age 55) read words presented in either syntactically correct sentences or in a scrambled order (“scrambled sentence”) while their EEG was recorded. We performed time–frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8–12 Hz) band between 200–700 ms for the OC compared to CC words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13–18 Hz) bands between 0 and 700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indirect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha-band.
  • Menenti, L., Petersson, K. M., & Hagoort, P. (2012). From reference to sense: How the brain encodes meaning for speaking. Frontiers in Psychology, 2, 384. doi:10.3389/fpsyg.2011.00384.

    Abstract

    In speaking, semantic encoding is the conversion of a non-verbal mental representation (the reference) into a semantic structure suitable for expression (the sense). In this fMRI study on sentence production we investigate how the speaking brain accomplishes this transition from non-verbal to verbal representations. In an overt picture description task, we manipulated repetition of sense (the semantic structure of the sentence) and reference (the described situation) separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these two components of semantic encoding. We also performed a control experiment with the same stimuli and design but without any linguistic task to identify areas involved in perception of the stimuli per se. The bilateral inferior parietal lobes were selectively sensitive to repetition of reference, while left inferior frontal gyrus showed selective suppression to repetition of sense. Strikingly, a widespread network of areas associated with language processing (left middle frontal gyrus, bilateral superior parietal lobes and bilateral posterior temporal gyri) all showed repetition suppression to both sense and reference processing. These areas are probably involved in mapping reference onto sense, the crucial step in semantic encoding. These results enable us to track the transition from non-verbal to verbal representations in our brains.
  • Menenti, L., Segaert, K., & Hagoort, P. (2012). The neuronal infrastructure of speaking. Brain and Language, 122, 71-80. doi:10.1016/j.bandl.2012.04.012.

    Abstract

    Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain’s integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we manipulated repetition of sentence meaning, words, and syntax separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these processes. We demonstrate that semantic, lexical and syntactic processes are carried out in partly overlapping and partly distinct brain networks and show that the classic left-hemispheric dominance for language is present for syntax but not semantics.
  • Menenti, L., Pickering, M. J., & Garrod, S. C. (2012). Towards a neural basis of interactive alignment in conversation. Frontiers in Human Neuroscience, 6, 185. doi:10.3389/fnhum.2012.00185.

    Abstract

    The interactive-alignment account of dialogue proposes that interlocutors achieve conversational success by aligning their understanding of the situation under discussion. Such alignment occurs because they prime each other at different levels of representation (e.g., phonology, syntax, semantics), and this is possible because these representations are shared across production and comprehension. In this paper, we briefly review the behavioral evidence, and then consider how findings from cognitive neuroscience might lend support to this account, on the assumption that alignment of neural activity corresponds to alignment of mental states. We first review work supporting representational parity between production and comprehension, and suggest that neural activity associated with phonological, lexical, and syntactic aspects of production and comprehension are closely related. We next consider evidence for the neural bases of the activation and use of situation models during production and comprehension, and how these demonstrate the activation of non-linguistic conceptual representations associated with language use. We then review evidence for alignment of neural mechanisms that are specific to the act of communication. Finally, we suggest some avenues of further research that need to be explored to test crucial predictions of the interactive alignment account.
  • Petersson, K. M., & Hagoort, P. (2012). The neurobiology of syntax: Beyond string-sets [Review article]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 1971-1883. doi:10.1098/rstb.2012.0101.

    Abstract

    The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.
  • Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120, 83-95. doi:10.1016/j.bandl.2010.08.003.

    Abstract

    In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple right-linear unification grammar in an implicit artificial grammar learning paradigm in 32 healthy Dutch university students (natural language FMRI data were already acquired for these participants). We predicted that artificial syntax processing would engage the left inferior frontal region (BA 44/45) and that this activation would overlap with syntax-related variability observed in the natural language experiment. The main findings of this study show that the left inferior frontal region centered on BA 44/45 is active during artificial syntax processing of well-formed (grammatical) sequence independent of local subsequence familiarity. The same region is engaged to a greater extent when a syntactic violation is present and structural unification becomes difficult or impossible. The effects related to artificial syntax in the left inferior frontal region (BA 44/45) were essentially identical when we masked these with activity related to natural syntax in the same subjects. Finally, the medial temporal lobe was deactivated during this operation, consistent with the view that implicit processing does not rely on declarative memory mechanisms that engage the medial temporal lobe. In the context of recent FMRI findings, we raise the question whether Broca’s region (or subregions) is specifically related to syntactic movement operations or the processing of hierarchically nested non-adjacent dependencies in the discussion section. We conclude that this is not the case. Instead, we argue that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner, independent of whether there are any processing requirements related to syntactic movement or hierarchically nested structures. In addition, we argue that the Chomsky hierarchy is not directly relevant for neurobiological systems.
  • Poletiek, F. H., & Lai, J. (2012). How semantic biases in simple adjacencies affect learning a complex structure with non-adjacencies in AGL: A statistical account. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2046 -2054. doi:10.1098/rstb.2012.0100.

    Abstract

    A major theoretical debate in language acquisition research regards the learnability of hierarchical structures. The artificial grammar learning methodology is increasingly influential in approaching this question. Studies using an artificial centre-embedded AnBn grammar without semantics draw conflicting conclusions. This study investigates the facilitating effect of distributional biases in simple AB adjacencies in the input sample—caused in natural languages, among others, by semantic biases—on learning a centre-embedded structure. A mathematical simulation of the linguistic input and the learning, comparing various distributional biases in AB pairs, suggests that strong distributional biases might help us to grasp the complex AnBn hierarchical structure in a later stage. This theoretical investigation might contribute to our understanding of how distributional features of the input—including those caused by semantic variation—help learning complex structures in natural languages.
  • Rowbotham, S., Holler, J., Lloyd, D., & Wearden, A. (2012). How do we communicate about pain? A systematic analysis of the semantic contribution of co-speech gestures in pain-focused conversations. Journal of Nonverbal Behavior, 36, 1-21. doi:10.1007/s10919-011-0122-5.

    Abstract

    The purpose of the present study was to investigate co-speech gesture use during communication about pain. Speakers described a recent pain experience and the data were analyzed using a ‘semantic feature approach’ to determine the distribution of information across gesture and speech. This analysis revealed that a considerable proportion of pain-focused talk was accompanied by gestures, and that these gestures often contained more information about pain than speech itself. Further, some gestures represented information that was hardly represented in speech at all. Overall, these results suggest that gestures are integral to the communication of pain and need to be attended to if recipients are to obtain a fuller understanding of the pain experience and provide help and support to pain sufferers.
  • Scheeringa, R., Petersson, K. M., Kleinschmidt, A., Jensen, O., & Bastiaansen, M. C. M. (2012). EEG alpha power modulation of fMRI resting state connectivity. Brain Connectivity, 2, 254-264. doi:10.1089/brain.2012.0088.

    Abstract

    In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include fMRI-based functional and/or effective connectivity, and EEG/MEG-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based BOLD connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between visual cortex and the rest of the brain. The results show that when alpha power increases BOLD connectivity between primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with anterior/medial thalamus decreases and ventral-medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. Decreased connectivity within the visual system may indicate enhanced functional inhibition during higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between visual cortex and other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long range neural connectivity changes.
  • Schmale, R., Cristia, A., & Seidl, A. (2012). Toddlers recognize words in an unfamiliar accent after brief exposure. Developmental Science, 15, 732-738. doi:10.1111/j.1467-7687.2012.01175.x.

    Abstract

    Both subjective impressions and previous research with monolingual listeners suggest that a foreign accent interferes with word recognition in infants, young children, and adults. However, because being exposed to multiple accents is likely to be an everyday occurrence in many societies, it is unexpected that such non-standard pronunciations would significantly impede language processing once the listener has experience with the relevant accent. Indeed, we report that 24-month-olds successfully accommodate an unfamiliar accent in rapid word learning after less than 2 minutes of accent exposure. These results underline the robustness of our speech perception mechanisms, which allow listeners to adapt even in the absence of extensive lexical knowledge and clear known-word referents.
  • Segaert, K., Menenti, L., Weber, K., Petersson, K. M., & Hagoort, P. (2012). Shared syntax in language production and language comprehension — An fMRI study. Cerebral Cortex, 22, 1662-1670. doi:10.1093/cercor/bhr249.

    Abstract

    During speaking and listening syntactic processing is a crucial step. It involves specifying syntactic relations between words in a sentence. If the production and comprehension modality share the neuronal substrate for syntactic processing then processing syntax in one modality should lead to adaptation effects in the other modality. In the present functional magnetic resonance imaging experiment, participants either overtly produced or heard descriptions of pictures. We looked for brain regions showing adaptation effects to the repetition of syntactic structures. In order to ensure that not just the same brain regions but also the same neuronal populations within these regions are involved in syntactic processing in speaking and listening, we compared syntactic adaptation effects within processing modalities (syntactic production-to-production and comprehension-to-comprehension priming) with syntactic adaptation effects between processing modalities (syntactic comprehension-to-production and production-to-comprehension priming). We found syntactic adaptation effects in left inferior frontal gyrus (Brodmann's area [BA] 45), left middle temporal gyrus (BA 21), and bilateral supplementary motor area (BA 6) which were equally strong within and between processing modalities. Thus, syntactic repetition facilitates syntactic processing in the brain within and across processing modalities to the same extent. We conclude that that the same neurobiological system seems to subserve syntactic processing in speaking and listening.
  • Seidl, A., & Cristia, A. (2012). Infants' learning of phonological status. Frontiers in Psychology, 3, 448. doi:10.3389/fpsyg.2012.00448.

    Abstract

    There is a substantial literature describing how infants become more sensitive to differences between native phonemes (sounds that are both present and meaningful in the input) and less sensitive to differences between non-native phonemes (sounds that are neither present nor meaningful in the input) over the course of development. Here, we review an emergent strand of literature that gives a more nuanced notion of the problem of sound category learning. This research documents infants’ discovery of phonological status, signaled by a decrease in sensitivity to sounds that map onto the same phonemic category vs. different phonemic categories. The former phones are present in the input, but their difference does not cue meaning distinctions because they are tied to one and the same phoneme. For example, the diphthong I in I’m should map to the same underlying category as the diphthong in I’d, despite the fact that the first vowel is nasal and the second oral. Because such pairs of sounds are processed differently than those than map onto different phonemes by adult speakers, the learner has to come to treat them differently as well. Interestingly, there is some evidence that infants’ sensitivity to dimensions that are allophonic in the ambient language declines as early as 11 months. We lay out behavioral research, corpora analyses, and computational work which sheds light on how infants achieve this feat at such a young age. Collectively, this work suggests that the computation of complementary distribution and the calculation of phonetic similarity operate in concert to guide infants toward a functional interpretation of sounds that are present in the input, yet not lexically contrastive. In addition to reviewing this literature, we discuss broader implications for other fundamental theoretical and empirical questions.
  • Silva, C., Faísca, L., Ingvar, M., Petersson, K. M., & Reis, A. (2012). Literacy: Exploring working memory systems. Journal of Clinical and Experimental Neuropsychology, 34(4), 369-377. doi:10.1080/13803395.2011.645017.

    Abstract

    Previous research showed an important association between reading and writing skills (literacy) and the phonological loop. However, the effects of literacy on other working memory components remain unclear. In this study, we investigated performance of illiterate subjects and their matched literate controls on verbal and nonverbal working memory tasks. Results revealed that the phonological loop is significantly influenced by literacy, while the visuospatial sketchpad appears to be less affected or not at all. Results also suggest that the central executive might be influenced by literacy, possibly as an expression of cognitive reserve.

    Files private

    Request files
  • Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., Bernard, M., Brown, A. A., Cannon, D. M., Chakravarty, M. M., Christoforou, A., Domin, M., Grimm, O., Hollinshead, M., Holmes, A. J., Homuth, G. and 184 moreStein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., Bernard, M., Brown, A. A., Cannon, D. M., Chakravarty, M. M., Christoforou, A., Domin, M., Grimm, O., Hollinshead, M., Holmes, A. J., Homuth, G., Hottenga, J.-J., Langan, C., Lopez, L. M., Hansell, N. K., Hwang, K. S., Kim, S., Laje, G., Lee, P. H., Liu, X., Loth, E., Lourdusamy, A., Mattingsdal, M., Mohnke, S., Maniega, S. M., Nho, K., Nugent, A. C., O'Brien, C., Papmeyer, M., Pütz, B., Ramasamy, A., Rasmussen, J., Rijpkema, M., Risacher, S. L., Roddey, J. C., Rose, E. J., Ryten, M., Shen, L., Sprooten, E., Strengman, E., Teumer, A., Trabzuni, D., Turner, J., van Eijk, K., van Erp, T. G. M., van Tol, M.-J., Wittfeld, K., Wolf, C., Woudstra, S., Aleman, A., Alhusaini, S., Almasy, L., Binder, E. B., Brohawn, D. G., Cantor, R. M., Carless, M. A., Corvin, A., Czisch, M., Curran, J. E., Davies, G., de Almeida, M. A. A., Delanty, N., Depondt, C., Duggirala, R., Dyer, T. D., Erk, S., Fagerness, J., Fox, P. T., Freimer, N. B., Gill, M., Göring, H. H. H., Hagler, D. J., Hoehn, D., Holsboer, F., Hoogman, M., Hosten, N., Jahanshad, N., Johnson, M. P., Kasperaviciute, D., Kent, J. W. J., Kochunov, P., Lancaster, J. L., Lawrie, S. M., Liewald, D. C., Mandl, R., Matarin, M., Mattheisen, M., Meisenzahl, E., Melle, I., Moses, E. K., Mühleisen, T. W., Nauck, M., Nöthen, M. M., Olvera, R. L., Pandolfo, M., Pike, G. B., Puls, R., Reinvang, I., Rentería, M. E., Rietschel, M., Roffman, J. L., Royle, N. A., Rujescu, D., Savitz, J., Schnack, H. G., Schnell, K., Seiferth, N., Smith, C., Hernández, M. C. V., Steen, V. M., den Heuvel, M. V., van der Wee, N. J., Haren, N. E. M. V., Veltman, J. A., Völzke, H., Walker, R., Westlye, L. T., Whelan, C. D., Agartz, I., Boomsma, D. I., Cavalleri, G. L., Dale, A. M., Djurovic, S., Drevets, W. C., Hagoort, P., Hall, J., Heinz, A., Clifford, R. J., Foroud, T. M., Le Hellard, S., Macciardi, F., Montgomery, G. W., Poline, J. B., Porteous, D. J., Sisodiya, S. M., Starr, J. M., Sussmann, J., Toga, A. W., Veltman, D. J., Walter, H., Weiner, M. W., EPIGEN Consortium, IMAGENConsortium, Saguenay Youth Study Group, Bis, J. C., Ikram, M. A., Smith, A. V., Gudnason, V., Tzourio, C., Vernooij, M. W., Launer, L. J., DeCarli, C., Seshadri, S., Heart, C. f., Consortium, A. R. i. G. E. (., Andreassen, O. A., Apostolova, L. G., Bastin, M. E., Blangero, J., Brunner, H. G., Buckner, R. L., Cichon, S., Coppola, G., de Zubicaray, G. I., Deary, I. J., Donohoe, G., de Geus, E. J. C., Espeseth, T., Fernández, G., Glahn, D. C., Grabe, H. J., Hardy, J., Hulshoff Pol, H. E., Jenkinson, M., Kahn, R. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Meyer-Lindenberg, A., Morris, D. W., Müller-Myhsok, B., Nichols, T. E., Ophoff, R. A., Paus, T., Pausova, Z., Penninx, B. W., Sämann, P. G., Saykin, A. J., Schumann, G., Smoller, J. W., Wardlaw, J. M., Weale, M. E., Martin, N. G., Franke, B., Wright, M. J., Thompson, P. M., & the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44, 552-561. doi:10.1038/ng.2250.

    Abstract

    Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10(-16)) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10(-12)). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10(-7)).
  • Sumer, B., Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2012). Development of locative expressions by Turkish deaf and hearing children: Are there modality effects? In A. K. Biller, E. Y. Chung, & A. E. Kimball (Eds.), Proceedings of the 36th Annual Boston University Conference on Language Development (BUCLD 36) (pp. 568-580). Boston: Cascadilla Press.
  • Udden, J., & Bahlmann, J. (2012). A rostro-caudal gradient of structured sequence processing in the left inferior frontal gyrus [Review article]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2023-2032. doi:10.1098/rstb.2012.0009.

    Abstract

    In this paper, we present two novel perspectives on the function of the left inferior frontal gyrus (LIFG). First, a structured sequence processing perspective facilitates the search for functional segregation within the LIFG and provides a way to express common aspects across cognitive domains including language, music and action. Converging evidence from functional magnetic resonance imaging and transcranial magnetic stimulation studies suggests that the LIFG is engaged in sequential processing in artificial grammar learning, independently of particular stimulus features of the elements (whether letters, syllables or shapes are used to build up sequences). The LIFG has been repeatedly linked to processing of artificial grammars across all different grammars tested, whether they include non-adjacent dependencies or mere adjacent dependencies. Second, we apply the sequence processing perspective to understand how the functional segregation of semantics, syntax and phonology in the LIFG can be integrated in the general organization of the lateral prefrontal cortex (PFC). Recently, it was proposed that the functional organization of the lateral PFC follows a rostro-caudal gradient, such that more abstract processing in cognitive control is subserved by more rostral regions of the lateral PFC. We explore the literature from the viewpoint that functional segregation within the LIFG can be embedded in a general rostro-caudal abstraction gradient in the lateral PFC. If the lateral PFC follows a rostro-caudal abstraction gradient, then this predicts that the LIFG follows the same principles, but this prediction has not yet been tested or explored in the LIFG literature. Integration might provide further insights into the functional architecture of the LIFG and the lateral PFC.
  • Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2012). Implicit acquisition of grammars with crossed and nested non-adjacent dependencies: Investigating the push-down stack model. Cognitive Science, 36, 1078-1101. doi:10.1111/j.1551-6709.2012.01235.x.

    Abstract

    A recent hypothesis in empirical brain research on language is that the fundamental difference between animal and human communication systems is captured by the distinction between finite-state and more complex phrase-structure grammars, such as context-free and context-sensitive grammars. However, the relevance of this distinction for the study of language as a neurobiological system has been questioned and it has been suggested that a more relevant and partly analogous distinction is that between non-adjacent and adjacent dependencies. Online memory resources are central to the processing of non-adjacent dependencies as information has to be maintained across intervening material. One proposal is that an external memory device in the form of a limited push-down stack is used to process non-adjacent dependencies. We tested this hypothesis in an artificial grammar learning paradigm where subjects acquired non-adjacent dependencies implicitly. Generally, we found no qualitative differences between the acquisition of non-adjacent dependencies and adjacent dependencies. This suggests that although the acquisition of non-adjacent dependencies requires more exposure to the acquisition material, it utilizes the same mechanisms used for acquiring adjacent dependencies. We challenge the push-down stack model further by testing its processing predictions for nested and crossed multiple non-adjacent dependencies. The push-down stack model is partly supported by the results, and we suggest that stack-like properties are some among many natural properties characterizing the underlying neurophysiological mechanisms that implement the online memory resources used in language and structured sequence processing.
  • Urrutia, M., de Vega, M., & Bastiaansen, M. C. M. (2012). Understanding counterfactuals in discourse modulates ERP and oscillatory gamma rhythms in the EEG. Brain Research, 1455, 40-55. doi:10.1016/j.brainres.2012.03.032.

    Abstract

    This study provides ERP and oscillatory dynamics data associated with the comprehension of narratives involving counterfactual events. Participants were given short stories describing an initial situation (“Marta wanted to plant flowers in her garden…”), followed by a critical sentence describing a new situation in either a factual (“Since she found a spade, she started to dig a hole”) or counterfactual format (“If she had found a spade, she would have started to dig a hole”), and then a continuation sentence that was either related to the initial situation (“she bought a spade”) or to the new one (“she planted roses”). The ERPs recorded for the continuation sentences related to the initial situation showed larger negativity after factuals than after counterfactuals, suggesting that the counterfactual's presupposition – the events did not occur – prevents updating the here-and-now of discourse. By contrast, continuation sentences related to the new situation elicited similar ERPs under both factual and counterfactual contexts, suggesting that counterfactuals also activate momentarily an alternative “as if” meaning. However, the reduction of gamma power following counterfactuals, suggests that the “as if” meaning is not integrated into the discourse, nor does it contribute to semantic unification processes.
  • Van den Brink, D., Van Berkum, J. J. A., Bastiaansen, M. C. M., Tesink, C. M. J. Y., Kos, M., Buitelaar, J. K., & Hagoort, P. (2012). Empathy matters: ERP evidence for inter-individual differences in social language processing. Social, Cognitive and Affective Neuroscience, 7, 173-182. doi:10.1093/scan/nsq094.

    Abstract

    When an adult claims he cannot sleep without his teddy bear, people tend to react surprised. Language interpretation is, thus, influenced by social context, such as who the speaker is. The present study reveals inter-individual differences in brain reactivity to social aspects of language. Whereas women showed brain reactivity when stereotype-based inferences about a speaker conflicted with the content of the message, men did not. This sex difference in social information processing can be explained by a specific cognitive trait, one’s ability to empathize. Individuals who empathize to a greater degree revealed larger N400 effects (as well as a larger increase in γ-band power) to socially relevant information. These results indicate that individuals with high-empathizing skills are able to rapidly integrate information about the speaker with the content of the message, as they make use of voice-based inferences about the speaker to process language in a top-down manner. Alternatively, individuals with lower empathizing skills did not use information about social stereotypes in implicit sentence comprehension, but rather took a more bottom-up approach to the processing of these social pragmatic sentences.
  • Van Alphen, P. M., & Van Berkum, J. J. A. (2012). Semantic involvement of initial and final lexical embeddings during sense-making: The advantage of starting late. Frontiers in Psychology, 3, 190. doi:10.3389/fpsyg.2012.00190.

    Abstract

    During spoken language interpretation, listeners rapidly relate the meaning of each individual word to what has been said before. However, spoken words often contain spurious other words, like 'day' in 'daisy', or 'dean' in 'sardine'. Do listeners also relate the meaning of such unintended, spurious words to the prior context? We used ERPs to look for transient meaning-based N400 effects in sentences that were completely plausible at the level of words intended by the speaker, but contained an embedded word whose meaning clashed with the context. Although carrier words with an initial embedding ('day' in 'daisy') did not elicit an embedding-related N400 effect relative to matched control words without embedding, carrier words with a final embedding ('dean' in 'sardine') did elicit such an effect. Together with prior work from our lab and the results of a Shortlist B simulation, our findings suggest that listeners do semantically interpret embedded words, albeit not under all conditions. We explain the latter by assuming that the sense-making system adjusts its hypothesis for how to interpret the external input at every new syllable, in line with recent ideas of active sampling in perception.
  • Van Ackeren, M. J., Casasanto, D., Bekkering, H., Hagoort, P., & Rueschemeyer, S.-A. (2012). Pragmatics in action: Indirect requests engage theory of mind areas and the cortical motor network. Journal of Cognitive Neuroscience, 24, 2237-2247. doi:10.1162/jocn_a_00274.

    Abstract

    Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word “grasp” elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59–70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical–semantic representations. Human Brain Mapping, doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance “It is hot here!” in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical motor areas reliably more than comprehension of sentences devoid of any implicit motor information. This is true despite the fact that IR sentences contain no lexical reference to action. (2) Comprehension of IR sentences also reliably activates substantial portions of the theory of mind network, known to be involved in making inferences about mental states of others. The implications of these findings for embodied theories of language are discussed.

Share this page