Publications

Displaying 101 - 200 of 299
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (2017). The neural basis for primary and acquired language skills. In E. Segers, & P. Van den Broek (Eds.), Developmental Perspectives in Written Language and Literacy: In honor of Ludo Verhoeven (pp. 17-28). Amsterdam: Benjamins. doi:10.1075/z.206.02hag.

    Abstract

    Reading is a cultural invention that needs to recruit cortical infrastructure that was not designed for it (cultural recycling of cortical maps). In the case of reading both visual cortex and networks for speech processing are recruited. Here I discuss current views on the neurobiological underpinnings of spoken language that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca’s and Wernicke’s region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. The consequences of this architecture for reading are discussed.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hanulikova, A. (2009). The role of syllabification in the lexical segmentation of German and Slovak. In S. Fuchs, H. Loevenbruck, D. Pape, & P. Perrier (Eds.), Some aspects of speech and the brain (pp. 331-361). Frankfurt am Main: Peter Lang.

    Abstract

    Two experiments were carried out to examine the syllable affiliation of intervocalic consonant clusters and their effects on speech segmentation in two different languages. In a syllable reversal task, Slovak and German speakers divided bisyllabic non-words that were presented aurally into two parts, starting with the second syllable. Following the maximal onset principle, intervocalic consonants should be maximally assigned to the onset of the following syllable in conformity with language-specific restrictions, e.g., /du.gru/, /zu.kro:/ (dot indicates a syllable boundary). According to German phonology, syllables require branching rhymes (hence, /zuk.ro:/). In Slovak, both /du.gru/ and /dug.ru/ are possible syllabifications. Experiment 1 showed that German speakers more often closed the first syllable (/zuk.ro:/), following the requirement for a branching rhyme. In Experiment 2, Slovak speakers showed no clear preference; the first syllable was either closed (/dug.ru/) or open (/du.gru/). Correlation analyses on previously conducted word-spotting studies (Hanulíková, in press, 2008) suggest that speech segmentation is unaffected by these syllabification preferences.
  • Holler, J., & Bavelas, J. (2017). Multi-modal communication of common ground: A review of social functions. In R. B. Church, M. W. Alibali, & S. D. Kelly (Eds.), Why gesture? How the hands function in speaking, thinking and communicating (pp. 213-240). Amsterdam: Benjamins.

    Abstract

    Until recently, the literature on common ground depicted its influence as a purely verbal phenomenon. We review current research on how common ground influences gesture. With informative exceptions, most experiments found that speakers used fewer gestures as well as fewer words in common ground contexts; i.e., the gesture/word ratio did not change. Common ground often led to more poorly articulated gestures, which parallels its effect on words. These findings support the principle of recipient design as well as more specific social functions such as grounding, the given-new contract, and Grice’s maxims. However, conceptual pacts or linking old with new information may maintain the original form. All together, these findings implicate gesture-speech ensembles rather than isolated effects on gestures alone.
  • Hurford, J. R., & Dediu, D. (2009). Diversity in language, genes and the language faculty. In R. Botha, & C. Knight (Eds.), The cradle of language (pp. 167-188). Oxford: Oxford University Press.
  • Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.

    Abstract

    This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing.
  • Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 845-865). Cambridge, MA: MIT Press.

    Abstract

    This chapter reviews the findings of 58 word production experiments using different tasks and neuroimaging techniques. The reported cerebral activation sites are coded in a common anatomic reference system. Based on a functional model of language production, the different word production tasks are analyzed in terms of their processing components. This approach allows a distinction between the core process of word production and preceding task-specific processes (lead-in processes) such as visual or auditory stimulus recognition. The core process of word production is subserved by a left-lateralized perisylvian/thalamic language production network. Within this network there seems to be functional specialization for the processing stages of word production. In addition, this chapter includes a discussion of the available evidence on syntactic production, self-monitoring, and the time course of word production.
  • Ingvar, M., & Petersson, K. M. (2000). Functional maps and brain networks. In A. W. Toga (Ed.), Brain mapping: The systems (pp. 111-140). San Diego: Academic Press.
  • Janzen, G., Herrmann, T., Katz, S., & Schweizer, K. (2000). Oblique Angled Intersections and Barriers: Navigating through a Virtual Maze. In Spatial Cognition II (pp. 277-294). Berlin: Springer.

    Abstract

    The configuration of a spatial layout has a substantial effect on the acquisition and the representation of the environment. In four experiments, we investigated navigation difficulties arising at oblique angled intersections. In the first three studies we investigated specific arrow-fork configurations. In dependence on the branch subjects use to enter the intersection different decision latencies and numbers of errors arise. If subjects see the intersection as a fork, it is more difficult to find the correct way as if it is seen as an arrow. In a fourth study we investigated different heuristics people use while making a detour around a barrier. Detour behaviour varies with the perspective. If subjects learn and navigate through the maze in a field perspective they use a heuristic of preferring right angled paths. If they have a view from above and acquire their knowledge in an observer perspective they use oblique angled paths more often.

    Files private

    Request files
  • Jolink, A. (2009). Finiteness in children with SLI: A functional approach. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 235-260). Berlin: Mouton de Gruyter.
  • Jongen-Janner, E., Pijls, F., & Kempen, G. (1990). Intelligente programma's voor grammatica- en spellingonderwijs. In Q. De Kort, & G. Leerdam (Eds.), Computertoepassingen in de Neerlandistiek. Almere: Landelijke Vereniging van Neerlandici.
  • Jordens, P. (2009). The acquisition of functional categories in child L1 and adult L2 acquisition. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 45-96). Berlin: Mouton de Gruyter.
  • Kempen, G. (1979). A study of syntactic bookkeeping during sentence production. In H. Ueckert, & D. Rhenius (Eds.), Komplexe menschliche Informationsverarbeitung (pp. 361-368). Bern: Hans Huber.

    Abstract

    It is an important feature of the human sentence production system that semantic and syntactic processes may overlap in time and do not proceed strictly serially. That is, the process of building the syntactic form of an utterance does not always wait until the complete semantic content for that utterance has been decided upon. On the contrary, speakers will often start pronouncing the first words of a sentence while still working on further details of its semantic content. An important advantage is memory economy. Semantic and syntactic fragments do not have to occupy working memory until complete semantic and syntactic structures for an utterance have been computed. Instead, each semantic and syntactic fragment is processed as soon as possible and is kept in working memory for a minimum period of time. This raises the question of how the sentence production system can maintain syntactic coherence across syntactic fragments. Presumably there are processes of "syntactic bookkeeping" which (1) store in working memory those syntactic properties of a fragmentary sentence which are needed to eliminate ungrammatical continuations, and (2) check whether a prospective continuation is indeed compatible with the sentence constructed so far. In reaction time experiments where subjects described, under time pressure, simple static pictures of an action performed by an actor, the second aspect of syntactic bookkeeping could be demonstrated. This evidence is used for modelling bookkeeping processes as part of a computational sentence generator which aims at simulating the syntactic operations people carry out during spontaneous speech.
  • Kempen, G., & Harbusch, K. (2017). Frequential test of (S)OV as unmarked word order in Dutch and German clauses: A serendipitous corpus-linguistic experiment. In H. Reckman, L. L. S. Cheng, M. Hijzelendoorn, & R. Sybesma (Eds.), Crossroads semantics: Computation, experiment and grammar (pp. 107-123). Amsterdam: Benjamins.

    Abstract

    In a paper entitled “Against markedness (and what to replace it with)”, Haspelmath argues “that the term ‘markedness’ is superfluous”, and that frequency asymmetries often explain structural (un)markedness asymmetries (Haspelmath 2006). We investigate whether this argument applies to Object and Verb orders in main (VO, marked) and subordinate (OV, unmarked) clauses of spoken and written German and Dutch, using English (without VO/OV alternation) as control. Frequency counts from six treebanks (three languages, two output modalities) do not support Haspelmath’s proposal. However, they reveal an unexpected phenomenon, most prominently in spoken Dutch and German: a small set of extremely high-frequent finite verbs with unspecific meanings populates main clauses much more densely than subordinate clauses. We suggest these verbs accelerate the start-up of grammatical encoding, thus facilitating sentence-initial output fluency
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Klaas, G. (2009). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 12 (pp. VI-VII). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klamer, M., Trilsbeek, P., Hoogervorst, T., & Haskett, C. (2017). Creating a Language Archive of Insular South East Asia and West New Guinea. In J. Odijk, & A. Van Hessen (Eds.), CLARIN in the Low Countries (pp. 113-121). London: Ubiquity Press. doi:10.5334/bbi.10.

    Abstract

    The geographical region of Insular South East Asia and New Guinea is well-known as an
    area of mega-biodiversity. Less well-known is the extreme linguistic diversity in this area:
    over a quarter of the world’s 6,000 languages are spoken here. As small minority languages,
    most of them will cease to be spoken in the coming few generations. The project described
    here ensures the preservation of unique records of languages and the cultures encapsulated
    by them in the region. The language resources were gathered by twenty linguists at,
    or in collaboration with, Dutch universities over the last 40 years, and were compiled and
    archived in collaboration with The Language Archive (TLA) at the Max Planck Institute in
    Nijmegen. The resulting archive constitutes a collection ofmultimediamaterials and written
    documents from 48 languages in Insular South East Asia and West New Guinea. At TLA,
    the data was archived according to state-of-the-art standards (TLA holds the Data Seal of
    Approval): the component metadata infrastructure CMDI was used; all metadata categories
    as well as relevant units of annotation were linked to the ISO data category registry ISOcat.
    This guaranteed proper integration of the language resources into the CLARIN framework.
    Through the archive, future speaker communities and researchers will be able to extensively
    search thematerials for answers to their own questions, even if they do not themselves know the language, and even if the language dies.
  • Klein, W. (1984). Bühler Ellipse. In C. F. Graumann, & T. Herrmann (Eds.), Karl Bühlers Axiomatik: Fünfzig Jahre Axiomatik der Sprachwissenschaften (pp. 117-141). Frankfurt am Main: Klostermann.
  • Klein, W. (2009). Concepts of time. In W. Klein, & P. Li (Eds.), The expression of time (pp. 5-38). Berlin: Mouton de Gruyter.
  • Klein, W., & Musan, R. (Eds.). (1999). Das deutsche Perfekt [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (113).
  • Klein, W. (2000). Der Mythos vom Sprachverfall. In Berlin-Brandenburgische Akademie der Wissenschaften (Ed.), Jahrbuch 1999: Berlin-Brandenburgische Akademie der Wissenschaften (pp. 139-158). Berlin: Akademie Verlag.
  • Klein, W. (1973). Eine Analyse der Kerne in Schillers "Räuber". In S. Marcus (Ed.), Mathematische Poetik (pp. 326-333). Frankfurt am Main: Athenäum.
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W. (Ed.). (1980). Argumentation [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (38/39).
  • Klein, W. (1979). Die Geschichte eines Tores. In R. Baum, F. J. Hausmann, & I. Monreal-Wickert (Eds.), Sprache in Unterricht und Forschung: Schwerpunkt Romanistik (pp. 175-194). Tübingen: Narr.
  • Klein, W. (1973). Dialekt und Einheitssprache im Fremdsprachenunterricht. In Beiträge zu den Sommerkursen des Goethe-Instituts München (pp. 53-60).
  • Klein, W. (2009). Finiteness, universal grammar, and the language faculty. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 333-344). New York: Psychology Press.
  • Klein, W. (2009). How time is encoded. In W. Klein, & P. Li (Eds.), The expression of time (pp. 39-82). Berlin: Mouton de Gruyter.
  • Klein, W. (1990). Language acquisition. In M. Piattelli Palmarini (Ed.), Cognitive science in Europe: Issues and trends: Golem monograph series, 1 (pp. 65-77). Ivrea: Golem.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W., & Li, P. (2009). Introduction. In W. Klein, & P. Li (Eds.), The expression of time (pp. 1-4). Berlin: Mouton de Gruyter.
  • Klein, W. (2000). Prozesse des Zweitspracherwerbs. In H. Grimm (Ed.), Enzyklopädie der Psychologie: Vol. 3 (pp. 538-570). Göttingen: Hogrefe.
  • Klein, W. (Ed.). (1984). Textverständlichkeit - Textverstehen [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (55).
  • Klein, W. (Ed.). (2000). Sprache des Rechts [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (118).
  • Klein, W. (Ed.). (1979). Sprache und Kontext [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (33).
  • Klein, W. (Ed.). (1990). Sprache und Raum [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (78).
  • Klein, W. (1990). Sprachverfall. In Ruprecht-Karls-Universität Heidelberg (Ed.), Sprache: Vorträge im Sommersemester (pp. 101-114). Heidelberg: Ruprecht-Karls-Universität.
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W., & Musan, R. (2009). Werden. In W. Eins, & F. Schmoë (Eds.), Wie wir sprechen und schreiben: Festschrift für Helmut Glück zum 60. Geburtstag (pp. 45-61). Wiesbaden: Harrassowitz Verlag.
  • Klein, W., & Dimroth, C. (Eds.). (2009). Worauf kann sich der Sprachunterricht stützen? [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 153.
  • Klein, W., & Schlieben-Lange, B. (Eds.). (1990). Zukunft der Sprache [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (79).
  • Klein, W. (Ed.). (1982). Zweitspracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (45).
  • Klein, W., & Dimroth, C. (2009). Untutored second language acquisition. In W. C. Ritchie, & T. K. Bhatia (Eds.), The new handbook of second language acquisition (2nd rev. ed., pp. 503-522). Bingley: Emerald.
  • Klein, W. (1974). Variation, Norm und Abweichung in der Sprache. In G. Lotzmann (Ed.), Sprach- und Sprechnormen - Verhalten und Abweichung (pp. 7-21). Heidelberg: Groos.
  • Klein, W. (1980). Verbal planning in route directions. In H. Dechert, & M. Raupach (Eds.), Temporal variables in speech (pp. 159-168). Den Haag: Mouton.
  • Kopecka, A. (2009). Continuity and change in the representation of motion events in French. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Özçaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 415-426). New York: Psychology Press.
  • Lai, V. T., & Frajzyngier, Z. (2009). Change of functions of the first person pronouns in Chinese. In M. Dufresne, M. Dupuis, & E. Vocaj (Eds.), Historical Linguistics 2007: Selected papers from the 18th International Conference on Historical Linguistics Montreal, 6-11 August 2007 (pp. 223-232). Amsterdam: John Benjamins.

    Abstract

    Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 2007
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1999). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (2nd enlarged and revised edition) (pp. 1005-1008). Amsterdam: Elsevier Science.
  • Levelt, W. J. M. (1990). De connectionistische mode. In P. Van Hoogstraten (Ed.), Belofte en werkelijkheid: Sociale wetenschappen en informatisering (pp. 39-68). Lisse: Swets & Zeitlinger.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, W. J. M. (1984). Geesteswetenschappelijke theorie als kompas voor de gangbare mening. In S. Dresden, & D. Van de Kaa (Eds.), Wetenschap ten goede en ten kwade (pp. 42-52). Amsterdam: North Holland.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Kempen, G. (1979). Language. In J. A. Michon, E. G. J. Eijkman, & L. F. W. De Klerk (Eds.), Handbook of psychonomics (Vol. 2) (pp. 347-407). Amsterdam: North Holland.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press.
  • Levelt, W. J. M. (1980). On-line processing constraints on the properties of signed and spoken language. In U. Bellugi, & M. Studdert-Kennedy (Eds.), Signed and spoken language: Biological constraints on linguistic form (pp. 141-160). Weinheim: Verlag Chemie.

    Abstract

    It is argued that the dominantly successive nature of language is largely mode-independent and holds equally for sign and for spoken language. A preliminary distinction is made between what is simultaneous or successive in the signal, and what is in the process; these need not coincide, and it is the successiveness of the process that is at stake. It is then discussed extensively for the word/sign level, and in a more preliminary fashion for the clause and discourse level that online processes are parallel in that they can simultaneously draw on various sources of knowledge (syntactic, semantic, pragmatic), but successive in that they can work at the interpretation of only one unit at a time. This seems to hold for both sign and spoken language. In the final section, conjectures are made about possible evolutionary explanations for these properties of language processing.
  • Levelt, W. J. M. (1999). Producing spoken language: A blueprint of the speaker. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 83-122). Oxford University Press.
  • Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (Eds.), International handbook of psychology (pp. 151-167). London: SAGE publications.
  • Levelt, W. J. M. (1984). Some perceptual limitations on talking about space. In A. J. Van Doorn, W. A. Van de Grind, & J. J. Koenderink (Eds.), Limits in perception (pp. 323-358). Utrecht: VNU Science Press.
  • Levelt, W. J. M. (1990). Some studies of lexical access at the Max Planck Institute for Psycholinguistics. In F. Aarts, & T. Van Els (Eds.), Contemporary Dutch linguistics (pp. 131-139). Washington: Georgetown University Press.
  • Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (Ed.), Encyclopedia of psychology (pp. 432-433). Oxford University Press.
  • Levelt, W. J. M. (1979). The origins of language and language awareness. In M. Von Cranach, K. Foppa, W. Lepenies, & D. Ploog (Eds.), Human ethology (pp. 739-745). Cambridge: Cambridge University Press.
  • Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press.
  • Levelt, W. J. M. (1980). Toegepaste aspecten van het taal-psychologisch onderzoek: Enkele inleidende overwegingen. In J. Matter (Ed.), Toegepaste aspekten van de taalpsychologie (pp. 3-11). Amsterdam: VU Boekhandel.
  • Levinson, S. C. (1982). Caste rank and verbal interaction in Western Tamilnadu. In D. B. McGilvray (Ed.), Caste ideology and interaction (pp. 98-203). Cambridge University Press.
  • Levinson, S. C. (1999). Deixis. In K. Brown, & J. Miller (Eds.), Concise encyclopedia of grammatical categories (pp. 132-136). Oxford: Elsevier.
  • Levinson, S. C. (1999). Deixis and Demonstratives. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573810.

    Abstract

    Demonstratives are key items in understanding how a language constructs and interprets spatial relationships. They are also multi-functional, with applications to non-spatial deictic fields such as time, perception, person and discourse, and uses in anaphora and affect marking. This item consists of an overview of theoretical distinctions in demonstrative systems, followed by a set of practical queries and elicitation suggestions for demonstratives in “table top” space, wider spatial fields, and naturalistic data.
  • Levinson, S. C. (2009). Cognitive anthropology. In G. Senft, J. O. Östman, & J. Verschueren (Eds.), Culture and language use (pp. 50-57). Amsterdam: Benjamins.
  • Levinson, S. C. (2009). Foreword. In J. Liep (Ed.), A Papuan plutocracy: Ranked exchange on Rossel Island (pp. ix-xxiii). Copenhagen: Aarhus University Press.
  • Levinson, S. C. (1999). General Questions About Topological Relations in Adpositions and Cases. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 57-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2615829.

    Abstract

    The world’s languages encode a diverse range of topological relations. However, cross-linguistic investigation suggests that the relations IN, AT and ON are especially fundamental to the grammaticised expression of space. The purpose of this questionnaire is to collect information about adpositions, case markers, and spatial nominals that are involved in the expression of core IN/AT/ON meanings. The task explores the more general parts of a language’s topological system, with a view to testing certain hypotheses about the packaging of spatial concepts. The questionnaire consists of target translation sentences that focus on a number of dimensions including animacy, caused location and motion.
  • Levinson, S. C. (1999). Hypotheses concerning basic locative constructions and the verbal elements within them. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 55-56). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002711.

    Abstract

    Languages differ widely in terms of how they encode the fundamental concepts of location and position. For some languages, verbs have an important role to play in describing situations (e.g., whether a bottle is standing or lying on the table); for others, verbs are not used in describing location at all. This item outlines certain hypotheses concerning four “types” of languages: those that have verbless basic locatives; those that use a single verb; those that have several verbs available to express location; and those that use positional verbs. The document was originally published as an appendix to the 'Picture series for positional verbs' (https://doi.org/10.17617/2.2573831).
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1999). Language and culture. In R. Wilson, & F. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 438-440). Cambridge: MIT press.
  • Levinson, S. C. (2009). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication (pp. 95-104). Oxford: Oxford University Press.
  • Levinson, S. C. (2017). Living with Manny's dangerous idea. In G. Raymond, G. H. Lerner, & J. Heritage (Eds.), Enabling human conduct: Studies of talk-in-interaction in honor of Emanuel A. Schegloff (pp. 327-349). Amsterdam: Benjamins.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1982). Speech act theory: The state of the art. In V. Kinsella (Ed.), Surveys 2. Eight state-of-the-art articles on key areas in language teaching. Cambridge University Press.
  • Levinson, S. C. (2017). Speech acts. In Y. Huang (Ed.), Oxford handbook of pragmatics (pp. 199-216). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199697960.013.22.

    Abstract

    The essential insight of speech act theory was that when we use language, we perform actions—in a more modern parlance, core language use in interaction is a form of joint action. Over the last thirty years, speech acts have been relatively neglected in linguistic pragmatics, although important work has been done especially in conversation analysis. Here we review the core issues—the identifying characteristics, the degree of universality, the problem of multiple functions, and the puzzle of speech act recognition. Special attention is drawn to the role of conversation structure, probabilistic linguistic cues, and plan or sequence inference in speech act recognition, and to the centrality of deep recursive structures in sequences of speech acts in conversation

    Files private

    Request files
  • Levinson, S. C., & Majid, A. (2009). Preface and priorities. In A. Majid (Ed.), Field manual volume 12 (pp. III). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). The role of language in mind. In S. Nolen-Hoeksema, B. Fredrickson, G. Loftus, & W. Wagenaar (Eds.), Atkinson and Hilgard's introduction to psychology (15th ed., pp. 352). London: Cengage learning.
  • Little, H. (Ed.). (2017). Special Issue on the Emergence of Sound Systems [Special Issue]. The Journal of Language Evolution, 2(1).
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2009). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 12 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883570.

    Abstract

    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community.

    Additional information

    2009_Synaesthesia_audio_files.zip
  • Majid, A., & Enfield, N. J. (2017). Body. In H. Burkhardt, J. Seibt, G. Imaguire, & S. Gerogiorgakis (Eds.), Handbook of mereology (pp. 100-103). Munich: Philosophia.
  • Majid, A., Manko, P., & De Valk, J. (2017). Language of the senses. In S. Dekker (Ed.), Scientific breakthroughs in the classroom! (pp. 40-76). Nijmegen: Science Education Hub Radboud University.

    Abstract

    The project that we describe in this chapter has the theme ‘Language of the senses’. This theme is
    based on the research of Asifa Majid and her team regarding the influence of language and culture on
    sensory perception. The chapter consists of two sections. Section 2.1 describes how different sensory
    perceptions are spoken of in different languages. Teachers can use this section as substantive preparation
    before they launch this theme in the classroom. Section 2.2 describes how teachers can handle
    this theme in accordance with the seven phases of inquiry-based learning. Chapter 1, in which the
    general guideline of the seven phases is described, forms the basis for this. We therefore recommend
    the use of chapter 1 as the starting point for the execution of a project in the classroom. This chapter
    provides the thematic additions.

    Additional information

    Materials Language of the senses
  • Majid, A., Manko, P., & de Valk, J. (2017). Taal der Zintuigen. In S. Dekker, & J. Van Baren-Nawrocka (Eds.), Wetenschappelijke doorbraken de klas in! Molecuulbotsingen, Stress en Taal der Zintuigen (pp. 128-166). Nijmegen: Wetenschapsknooppunt Radboud Universiteit.

    Abstract

    Taal der zintuigen gaat over de invloed van taal en cultuur op zintuiglijke waarnemingen. Hoe omschrijf je wat je ziet, voelt, proeft of ruikt? In sommige culturen zijn er veel verschillende woorden voor kleur, in andere culturen juist weer heel weinig. Worden we geboren met deze verschillende kleurgroepen? En bepaalt hoe je ergens over praat ook wat je waarneemt?
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Mehler, J., & Cutler, A. (1990). Psycholinguistic implications of phonological diversity among languages. In M. Piattelli-Palmerini (Ed.), Cognitive science in Europe: Issues and trends (pp. 119-134). Rome: Golem.
  • Narasimhan, B., & Brown, P. (2009). Getting the inside story: Learning to talk about containment in Tzeltal and Hindi. In V. C. Mueller-Gathercole (Ed.), Routes to language: Studies in honor of Melissa Bowerman (pp. 97-132). New York: Psychology Press.

    Abstract

    The present study examines young children's uses of semantically specific and general relational containment terms (e.g. in, enter) in Hindi and Tzeltal, and the extent to which their usage patterns are influenced by input frequency. We hypothesize that if children have a preference for relational terms that are semantically specific, this will be reflected in early acquisition of more semantically specific expressions and underextension of semantically general ones, regardless of the distributional patterns of use of these terms in the input. Our findings however show a strong role for input frequency in guiding children's patterns of use of containment terms in the two languages. Yet language-specific lexicalization patterns play a role as well, since object-specific containment verbs are used as early as the semantically general 'enter' verb by children acquiring Tzeltal.
  • Nas, G., Kempen, G., & Hudson, P. (1984). De rol van spelling en klank bij woordherkenning tijdens het lezen. In A. Thomassen, L. Noordman, & P. Elling (Eds.), Het leesproces. Lisse: Swets & Zeitlinger.

Share this page