Publications

Displaying 1601 - 1643 of 1643
  • Weissenborn, J. (1986). Learning how to become an interlocutor. The verbal negotiation of common frames of reference and actions in dyads of 7–14 year old children. In J. Cook-Gumperz, W. A. Corsaro, & J. Streeck (Eds.), Children's worlds and children's language (pp. 377-404). Berlin: Mouton de Gruyter.
  • Widlok, T. (2004). Ethnography in language Documentation. Language Archive Newsletter, 1(3), 4-6.
  • Wiese, R., Orzechowska, P., Alday, P. M., & Ulbrich, C. (2017). Structural Principles or Frequency of Use? An ERP Experiment on the Learnability of Consonant Clusters. Frontiers in Psychology, 7: 2005. doi:10.3389/fpsyg.2016.02005.

    Abstract

    Phonological knowledge of a language involves knowledge about which segments can be combined under what conditions. Languages vary in the quantity and quality of licensed combinations, in particular sequences of consonants, with Polish being a language with a large inventory of such combinations. The present paper reports on a two-session experiment in which Polish-speaking adult participants learned nonce words with final consonant clusters. The aim was to study the role of two factors which potentially play a role in the learning of phonotactic structures: the phonological principle of sonority (ordering sound segments within the syllable according to their inherent loudness) and the (non-) existence as a usage-based phenomenon. EEG responses in two different time windows (adversely to behavioral responses) show linguistic processing by native speakers of Polish to be sensitive to both distinctions, in spite of the fact that Polish is rich in sonority-violating clusters. In particular, a general learning effect in terms of an N400 effect was found which was demonstrated to be different for sonority-obeying clusters than for sonority-violating clusters. Furthermore, significant interactions of formedness and session, and of existence and session, demonstrate that both factors, the sonority principle and the frequency pattern, play a role in the learning process.
  • Wilkins, D., Kita, S., & Enfield, N. J. (2007). 'Ethnography of pointing' - field worker's guide. In A. Majid (Ed.), Field Manual Volume 10 (pp. 89-95). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492922.

    Abstract

    Pointing gestures are recognised to be a primary manifestation of human social cognition and communicative capacity. The goal of this task is to collect empirical descriptions of pointing practices in different cultural settings.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322-2333. doi:10.1093/cercor/bhl141.

    Abstract

    Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system.
  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.

    Abstract

    Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Willems, R. M. (2007). The neural construction of a Tinkertoy [‘Journal club’ review]. The Journal of Neuroscience, 27, 1509-1510. doi:10.1523/JNEUROSCI.0005-07.2007.
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Wittenburg, P., Skiba, R., & Trilsbeek, P. (2004). Technology and Tools for Language Documentation. Language Archive Newsletter, 1(4), 3-4.
  • Wittenburg, P. (2004). The IMDI metadata concept. In S. F. Ferreira (Ed.), Workingmaterial on Building the LR&E Roadmap: Joint COCOSDA and ICCWLRE Meeting, (LREC2004). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P. (2004). Training Course in Lithuania. Language Archive Newsletter, 1(2), 6-6.
  • Wittenburg, P., Brugman, H., Broeder, D., & Russel, A. (2004). XML-based language archiving. In Workshop Proceedings on XML-based Richly Annotaded Corpora (LREC2004) (pp. 63-69). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P., Gulrajani, G., Broeder, D., & Uneson, M. (2004). Cross-disciplinary integration of metadata descriptions. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004) (pp. 113-116). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P., Dirksmeyer, R., Brugman, H., & Klaas, G. (2004). Digital formats for images, audio and video. Language Archive Newsletter, 1(1), 3-6.
  • Wittenburg, P., Johnson, H., Buchhorn, M., Brugman, H., & Broeder, D. (2004). Architecture for distributed language resource management and archiving. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004) (pp. 361-364). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P. (2004). International Expert Meeting on Access Management for Distributed Language Archives. Language Archive Newsletter, 1(3), 12-12.
  • Wittenburg, P. (2004). Final review of INTERA. Language Archive Newsletter, 1(4), 11-12.
  • Wittenburg, P. (2004). LinguaPax Forum on Language Diversity, Sustainability, and Peace. Language Archive Newsletter, 1(3), 13-13.
  • Wittenburg, P. (2004). LREC conference 2004. Language Archive Newsletter, 1(3), 12-13.
  • Wittenburg, P. (2004). News from the Archive of the Max Planck Institute for Psycholinguistics. Language Archive Newsletter, 1(4), 12-12.
  • Wnuk, E., De Valk, J. M., Huisman, J. L. A., & Majid, A. (2017). Hot and cold smells: Odor-temperature associations across cultures. Frontiers in Psychology, 8: 1373. doi:10.3389/fpsyg.2017.01373.

    Abstract

    It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs
  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609-1612. doi:10.1126/science.1139597.

    Abstract

    Brain processing depends on the interactions between neuronal groups. Those interactions are governed by the pattern of anatomical connections and by yet unknown mechanisms that modulate the effective strength of a given connection. We found that the mutual influence among neuronal groups depends on the phase relation between rhythmic activities within the groups. Phase relations supporting interactions between the groups preceded those interactions by a few milliseconds, consistent with a mechanistic role. These effects were specific in time, frequency, and space, and we therefore propose that the pattern of synchronization flexibly determines the pattern of neuronal interactions.
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Wong, M. M. K., Watson, L. M., & Becker, E. B. E. (2017). Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. Journal of Neurology & Neuromedicine, 2(7), 11-15. doi:10.29245/2572.942X/2017/7.1134.

    Abstract

    The cerebellar ataxias are a group of incurable brain disorders that are caused primarily by the progressive dysfunction and degeneration of cerebellar Purkinje cells. The lack of reliable disease models for the heterogeneous ataxias has hindered the understanding of the underlying pathogenic mechanisms as well as the development of effective therapies for these devastating diseases. Recent advances in the field of induced pluripotent stem cell (iPSC) technology offer new possibilities to better understand and potentially reverse disease pathology. Given the neurodevelopmental phenotypes observed in several types of ataxias, iPSC-based models have the potential to provide significant insights into disease progression, as well as opportunities for the development of early intervention therapies. To date, however, very few studies have successfully used iPSC-derived cells to cerebellar ataxias. In this review, we focus on recent breakthroughs in generating human iPSC-derived Purkinje cells. We also highlight the future challenges that will need to be addressed in order to fully exploit these models for the modelling of the molecular mechanisms underlying cerebellar ataxias and the development of effective therapeutics.
  • Yager, J., & Burenhult, N. (2017). Jedek: a newly discovered Aslian variety of Malaysia. Linguistic Typology, 21(3), 493-545. doi:10.1515/lingty-2017-0012.

    Abstract

    Jedek is a previously unrecognized variety of the Northern Aslian subgroup of the Aslian branch of the Austroasiatic language family. It is spoken by c. 280 individuals in the resettlement area of Sungai Rual, near Jeli in Kelantan state, Peninsular Malaysia. The community originally consisted of several bands of foragers along the middle reaches of the Pergau river. Jedek’s distinct status first became known during a linguistic survey carried out in the DOBES project Tongues of the Semang (2005-2011). This paper describes the process leading up to its discovery and provides an overview of its typological characteristics.
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., & Hino, Y. (2017). The phonological unit of Japanese Kanji compounds: A masked priming investigation. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1303-1328. doi:10.1037/xhp0000374.

    Abstract

    Using the masked priming paradigm, we examined which phonological unit is used when naming Kanji compounds. Although the phonological unit in the Japanese language has been suggested to be the mora, Experiment 1 found no priming for mora-related Kanji prime-target pairs. In Experiment 2, significant priming was only found when Kanji pairs shared the whole sound of their initial Kanji characters. Nevertheless, when the same Kanji pairs used in Experiment 2 were transcribed into Kana, significant mora priming was observed in Experiment 3. In Experiment 4, matching the syllable structure and pitch-accent of the initial Kanji characters did not lead to mora priming, ruling out potential alternative explanations for the earlier absence of the effect. A significant mora priming effect was observed, however, when the shared initial mora constituted the whole sound of their initial Kanji characters in Experiments 5. Lastly, these results were replicated in Experiment 6. Overall, these results indicate that the phonological unit involved when naming Kanji compounds is not the mora but the whole sound of each Kanji character. We discuss how different phonological units may be involved when processing Kanji and Kana words as well as the implications for theories dealing with language production processes.
  • Zavala, R. (2000). Multiple classifier systems in Akatek (Mayan). In G. Senft (Ed.), Systems of nominal classification (pp. 114-146). Cambridge University Press.
  • Zeshan, U. (2004). Basic English course taught in Indian Sign Language (Ali Yavar Young National Institute for Hearing Handicapped, Ed.). National Institute for the Hearing Handicapped: Mumbai.
  • Zeshan, U. (2004). Interrogative constructions in sign languages - Cross-linguistic perspectives. Language, 80(1), 7-39.

    Abstract

    This article reports on results from a broad crosslinguistic study based on data from thirty-five signed languages around the world. The study is the first of its kind, and the typological generalizations presented here cover the domain of interrogative structures as they appear across a wide range of geographically and genetically distinct signed languages. Manual and nonmanual ways of marking basic types of questions in signed languages are investigated. As a result, it becomes clear that the range of crosslinguistic variation is extensive for some subparameters, such as the structure of question-word paradigms, while other parameters, such as the use of nonmanual expressions in questions, show more similarities across signed languages. Finally, it is instructive to compare the findings from signed language typology to relevant data from spoken languages at a more abstract, crossmodality level.
  • Zeshan, U. (2004). Hand, head and face - negative constructions in sign languages. Linguistic Typology, 8(1), 1-58. doi:10.1515/lity.2004.003.

    Abstract

    This article presents a typology of negative constructions across a substantial number of sign languages from around the globe. After situating the topic within the wider context of linguistic typology, the main negation strategies found across sign languages are described. Nonmanual negation includes the use of head movements and facial expressions for negation and is of great importance in sign languages as well as particularly interesting from a typological point of view. As far as manual signs are concerned, independent negative particles represent the dominant strategy, but there are also instances of irregular negation in most sign languages. Irregular negatives may take the form of suppletion, cliticisation, affixing, or internal modification of a sign. The results of the study lead to interesting generalisations about similarities and differences between negatives in signed and spoken languages.
  • Zhang, Y., & Yu, C. (2017). How misleading cues influence referential uncertainty in statistical cross-situational learning. In M. LaMendola, & J. Scott (Eds.), Proceedings of the 41st Annual Boston University Conference on Language Development (BUCLD 41) (pp. 820-833). Boston, MA: Cascadilla Press.
  • Zhen, Z., Kong, X., Huang, L., Yang, Z., Wang, X., Hao, X., Huang, T., Song, Y., & Liu, J. (2017). Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275. doi:10.1002/hbm.23519.

    Abstract

    Scene-selective regions (SSRs), including the parahippocampal place area (PPA), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS), are among the most widely characterized functional regions in the human brain. However, previous studies have mostly focused on the commonality within each SSR, providing little information on different aspects of their variability. In a large group of healthy adults (N = 202), we used functional magnetic resonance imaging to investigate different aspects of topographical and functional variability within SSRs, including interindividual, interhemispheric, and sex differences. First, the PPA, RSC, and TOS were delineated manually for each individual. We then demonstrated that SSRs showed substantial interindividual variability in both spatial topography and functional selectivity. We further identified consistent interhemispheric differences in the spatial topography of all three SSRs, but distinct interhemispheric differences in scene selectivity. Moreover, we found that all three SSRs showed stronger scene selectivity in men than in women. In summary, our work thoroughly characterized the interindividual, interhemispheric, and sex variability of the SSRs and invites future work on the origin and functional significance of these variabilities. Additionally, we constructed the first probabilistic atlases for the SSRs, which provide the detailed anatomical reference for further investigations of the scene network.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • De Zubicaray, G., & Fisher, S. E. (Eds.). (2017). Genes, brain and language [Special Issue]. Brain and Language, 172.
  • De Zubicaray, G., & Fisher, S. E. (2017). Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 172, 1-2. doi:10.1016/j.bandl.2017.08.003.

Share this page