Publications

Displaying 201 - 232 of 232
  • Seuren, P. A. M. (1988). Lexical meaning and presupposition. In W. Hüllen, & R. Schulze (Eds.), Understanding the lexicon: Meaning, sense and world knowledge in lexical semantics (pp. 170-187). Tübingen: Niemeyer.
  • Seuren, P. A. M. (1991). Notes on noun phrases and quantification. In Proceedings of the International Conference on Current Issues in Computational Linguistics (pp. 19-44). Penang, Malaysia: Universiti Sains Malaysia.
  • Seuren, P. A. M. (2000). Pseudocomplementen. In H. Den Besten, E. Elffers, & J. Luif (Eds.), Samengevoegde woorden. Voor Wim Klooster bij zijn afscheid als hoogleraar (pp. 231-237). Amsterdam: Leerstoelgroep Nederlandse Taalkunde, Universiteit van Amsterdam.
  • Seuren, P. A. M. (1991). The definition of serial verbs. In F. Byrne, & T. Huebner (Eds.), Development and structures of Creole languages: Essays in honor of Derek Bickerton (pp. 193-205). Amsterdam: Benjamins.
  • Seuren, P. A. M. (1991). Präsuppositionen. In A. Von Stechow, & D. Wunderlich (Eds.), Semantik: Ein internationales Handbuch der zeitgenössischen Forschung (pp. 286-318). Berlin: De Gruyter.
  • Seuren, P. A. M. (1985). Predicate raising and semantic transparency in Mauritian Creole. In N. Boretzky, W. Enninger, & T. Stolz (Eds.), Akten des 2. Essener Kolloquiums über "Kreolsprachen und Sprachkontakte", 29-30 Nov. 1985 (pp. 203-229). Bochum: Brockmeyer.
  • Seuren, P. A. M. (1991). What makes a text untranslatable? In H. M. N. Noor Ein, & H. S. Atiah (Eds.), Pragmatik Penterjemahan: Prinsip, Amalan dan Penilaian Menuju ke Abad 21 ("The Pragmatics of Translation: Principles, Practice and Evaluation Moving towards the 21st Century") (pp. 19-27). Kuala Lumpur: Dewan Bahasa dan Pustaka.
  • Shi, R., Werker, J., & Cutler, A. (2003). Function words in early speech perception. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 3009-3012).

    Abstract

    Three experiments examined whether infants recognise functors in phrases, and whether their representations of functors are phonetically well specified. Eight- and 13- month-old English infants heard monosyllabic lexical words preceded by real functors (e.g., the, his) versus nonsense functors (e.g., kuh); the latter were minimally modified segmentally (but not prosodically) from real functors. Lexical words were constant across conditions; thus recognition of functors would appear as longer listening time to sequences with real functors. Eightmonth- olds' listening times to sequences with real versus nonsense functors did not significantly differ, suggesting that they did not recognise real functors, or functor representations lacked phonetic specification. However, 13-month-olds listened significantly longer to sequences with real functors. Thus, somewhere between 8 and 13 months of age infants learn familiar functors and represent them with segmental detail. We propose that accumulated frequency of functors in input in general passes a critical threshold during this time.
  • Skiba, R. (1988). Computer analysis of language data using the data transformation program TEXTWOLF in conjunction with a database system. In U. Jung (Ed.), Computers in applied linguistics and language teaching (pp. 155-159). Frankfurt am Main: Peter Lang.
  • Skiba, R. (1988). Computerunterstützte Analyse von sprachlichen Daten mit Hilfe des Datenumwandlungsprogramms TextWolf in Kombination mit einem Datenbanksystem. In B. Spillner (Ed.), Angewandte Linguistik und Computer (pp. 86-88). Tübingen: Gunter Narr.
  • Skiba, R. (1991). Eine Datenbank für Deutsch als Zweitsprache Materialien: Zum Einsatz von PC-Software bei Planung von Zweitsprachenunterricht. In H. Barkowski, & G. Hoff (Eds.), Berlin interkulturell: Ergebnisse einer Berliner Konferenz zu Migration und Pädagogik. (pp. 131-140). Berlin: Colloquium.
  • Skiba, R. (2003). Computer Analysis: Corpus based language research. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgil (Eds.), Handbook ''Sociolinguistics'' (2nd ed.) (pp. 1250-1260). Berlin: de Gruyter.
  • De Smedt, K., & Kempen, G. (1991). Segment Grammar: A formalism for incremental sentence generation. In C. Paris, W. Swartout, & W. Mann (Eds.), Natural language generation and computational linguistics (pp. 329-349). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Incremental sentence generation imposes special constraints on the representation of the grammar and the design of the formulator (the module which is responsible for constructing the syntactic and morphological structure). In the model of natural speech production presented here, a formalism called Segment Grammar is used for the representation of linguistic knowledge. We give a definition of this formalism and present a formulator design which relies on it. Next, we present an object- oriented implementation of Segment Grammar. Finally, we compare Segment Grammar with other formalisms.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Van Valin Jr., R. D. (2000). Focus structure or abstract syntax? A role and reference grammar account of some ‘abstract’ syntactic phenomena. In Z. Estrada Fernández, & I. Barreras Aguilar (Eds.), Memorias del V Encuentro Internacional de Lingüística en el Noroeste: (2 v.) Estudios morfosintácticos (pp. 39-62). Hermosillo: Editorial Unison.
  • Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An algorithm for computing pitch contours on the basis of sentence accents and syntactic structure. In B. Müller (Ed.), Sprachsynthese: Zur Synthese von natürlich gesprochener Sprache aus Texten und Konzepten (pp. 157-182). Hildesheim: Georg Olms.
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • Wagner, A., & Braun, A. (2003). Is voice quality language-dependent? Acoustic analyses based on speakers of three different languages. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 651-654). Adelaide: Causal Productions.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In M. J. Solé, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of Phonetic Sciences.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 1437-1440). Adelaide: Causal Productions.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signalto-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A. (2000). Phonotactic and acoustic cues for word segmentation in English. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP 2000) (pp. 782-785).

    Abstract

    This study investigates the influence of both phonotactic and acoustic cues on the segmentation of spoken English. Listeners detected embedded English words in nonsense sequences (word spotting). Words aligned with phonotactic boundaries were easier to detect than words without such alignment. Acoustic cues to boundaries could also have signaled word boundaries, especially when word onsets lacked phonotactic alignment. However, only one of several durational boundary cues showed a marginally significant correlation with response times (RTs). The results suggest that word segmentation in English is influenced primarily by phonotactic constraints and only secondarily by acoustic aspects of the speech signal.
  • Weber, A. (2000). The role of phonotactics in the segmentation of native and non-native continuous speech. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP, Workshop on Spoken Word Access Processes. Nijmegen: MPI for Psycholinguistics.

    Abstract

    Previous research has shown that listeners make use of their knowledge of phonotactic constraints to segment speech into individual words. The present study investigates the influence of phonotactics when segmenting a non-native language. German and English listeners detected embedded English words in nonsense sequences. German listeners also had knowledge of English, but English listeners had no knowledge of German. Word onsets were either aligned with a syllable boundary or not, according to the phonotactics of the two languages. Words aligned with either German or English phonotactic boundaries were easier for German listeners to detect than words without such alignment. Responses of English listeners were influenced primarily by English phonotactic alignment. The results suggest that both native and non-native phonotactic constraints influence lexical segmentation of a non-native, but familiar, language.
  • Weissenborn, J. (1988). Von der demonstratio ad oculos zur Deixis am Phantasma. Die Entwicklung der lokalen Referenz bei Kindern. In Karl Bühler's Theory of Language. Proceedings of the Conference held at Kirchberg, August 26, 1984 and Essen, November 21–24, 1984 (pp. 257-276). Amsterdam: Benjamins.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Zavala, R. (2000). Multiple classifier systems in Akatek (Mayan). In G. Senft (Ed.), Systems of nominal classification (pp. 114-146). Cambridge University Press.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page