Publications

Displaying 201 - 300 of 1005
  • Egger, J., Rowland, C. F., & Bergmann, C. (2020). Improving the robustness of infant lexical processing speed measures. Behavior Research Methods, 52, 2188-2201. doi:10.3758/s13428-020-01385-5.

    Abstract

    Visual reaction times to target pictures after naming events are an informative measurement in language acquisition research, because gaze shifts measured in looking-while-listening paradigms are an indicator of infants’ lexical speed of processing. This measure is very useful, as it can be applied from a young age onwards and has been linked to later language development. However, to obtain valid reaction times, the infant is required to switch the fixation of their eyes from a distractor to a target object. This means that usually at least half the trials have to be discarded—those where the participant is already fixating the target at the onset of the target word—so that no reaction time can be measured. With few trials, reliability suffers, which is especially problematic when studying individual differences. In order to solve this problem, we developed a gaze-triggered looking-while-listening paradigm. The trials do not differ from the original paradigm apart from the fact that the target object is chosen depending on the infant’s eye fixation before naming. The object the infant is looking at becomes the distractor and the other object is used as the target, requiring a fixation switch, and thus providing a reaction time. We tested our paradigm with forty-three 18-month-old infants, comparing the results to those from the original paradigm. The Gaze-triggered paradigm yielded more valid reaction time trials, as anticipated. The results of a ranked correlation between the conditions confirmed that the manipulated paradigm measures the same concept as the original paradigm.
  • Eibl-Eibesfeldt, I., Senft, B., & Senft, G. (1987). Trobriander (Ost-Neuguinea, Trobriand Inseln, Kaile'una) Fadenspiele 'ninikula'. Publikation zu Wissenschaftlichen Filmen, Sektion Ethnologie, 25, 1-15.
  • Eichert, N., Peeters, D., & Hagoort, P. (2018). Language-driven anticipatory eye movements in virtual reality. Behavior Research Methods, 50(3), 1102-1115. doi:10.3758/s13428-017-0929-z.

    Abstract

    Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. The use of this variant of the visual world paradigm has shown that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional (2D) stimuli that are mere abstractions of real world objects. Here we present a visual world paradigm study in a three-dimensional (3D) immersive virtual reality environment. Despite significant changes in the stimulus material and the different mode of stimulus presentation, language-mediated anticipatory eye movements were observed. These findings thus indicate prediction of upcoming words in language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eye-tracking in rich and multimodal 3D virtual environments.

    Additional information

    13428_2017_929_MOESM1_ESM.docx
  • Eielts, C., Pouw, W., Ouwehand, K., Van Gog, T., Zwaan, R. A., & Paas, F. (2020). Co-thought gesturing supports more complex problem solving in subjects with lower visual working-memory capacity. Psychological Research, 84, 502-513. doi:10.1007/s00426-018-1065-9.

    Abstract

    During silent problem solving, hand gestures arise that have no communicative intent. The role of such co-thought gestures in
    cognition has been understudied in cognitive research as compared to co-speech gestures. We investigated whether gesticulation
    during silent problem solving supported subsequent performance in a Tower of Hanoi problem-solving task, in relation
    to visual working-memory capacity and task complexity. Seventy-six participants were assigned to either an instructed gesture
    condition or a condition that allowed them to gesture, but without explicit instructions to do so. This resulted in three
    gesture groups: (1) non-gesturing; (2) spontaneous gesturing; (3) instructed gesturing. In line with the embedded/extended
    cognition perspective on gesture, gesturing benefited complex problem-solving performance for participants with a lower
    visual working-memory capacity, but not for participants with a lower spatial working-memory capacity.
  • Eijk, L., Fletcher, A., McAuliffe, M., & Janse, E. (2020). The effects of word frequency and word probability on speech rhythm in dysarthria. Journal of Speech, Language, and Hearing Research, 63, 2833-2845. doi:10.1044/2020_JSLHR-19-00389.

    Abstract

    Purpose

    In healthy speakers, the more frequent and probable a word is in its context, the shorter the word tends to be. This study investigated whether these probabilistic effects were similarly sized for speakers with dysarthria of different severities.
    Method

    Fifty-six speakers of New Zealand English (42 speakers with dysarthria and 14 healthy speakers) were recorded reading the Grandfather Passage. Measurements of word duration, frequency, and transitional word probability were taken.
    Results

    As hypothesized, words with a higher frequency and probability tended to be shorter in duration. There was also a significant interaction between word frequency and speech severity. This indicated that the more severe the dysarthria, the smaller the effects of word frequency on speakers' word durations. Transitional word probability also interacted with speech severity, but did not account for significant unique variance in the full model.
    Conclusions

    These results suggest that, as the severity of dysarthria increases, the duration of words is less affected by probabilistic variables. These findings may be due to reductions in the control and execution of muscle movement exhibited by speakers with dysarthria.
  • Emmendorfer, A. K., Correia, J. M., Jansma, B. M., Kotz, S. A., & Bonte, M. (2020). ERP mismatch response to phonological and temporal regularities in speech. Scientific Reports, 10: 9917. doi:10.1038/s41598-020-66824-x.

    Abstract

    Predictions of our sensory environment facilitate perception across domains. During speech perception, formal and temporal predictions may be made for phonotactic probability and syllable stress patterns, respectively, contributing to the efficient processing of speech input. The current experiment employed a passive EEG oddball paradigm to probe the neurophysiological processes underlying temporal and formal predictions simultaneously. The component of interest, the mismatch negativity (MMN), is considered a marker for experience-dependent change detection, where its timing and amplitude are indicative of the perceptual system’s sensitivity to presented stimuli. We hypothesized that more predictable stimuli (i.e. high phonotactic probability and first syllable stress) would facilitate change detection, indexed by shorter peak latencies or greater peak amplitudes of the MMN. This hypothesis was confirmed for phonotactic probability: high phonotactic probability deviants elicited an earlier MMN than low phonotactic probability deviants. We do not observe a significant modulation of the MMN to variations in syllable stress. Our findings confirm that speech perception is shaped by formal and temporal predictability. This paradigm may be useful to investigate the contribution of implicit processing of statistical regularities during (a)typical language development.

    Additional information

    supplementary information
  • Enfield, N. J. (1997). Review of 'Give: a cognitive linguistic study', by John Newman. Australian Journal of Linguistics, 17(1), 89-92. doi:10.1080/07268609708599546.
  • Enfield, N. J. (1997). Review of 'Plastic glasses and church fathers: semantic extension from the ethnoscience tradition', by David Kronenfeld. Anthropological Linguistics, 39(3), 459-464. Retrieved from http://www.jstor.org/stable/30028999.
  • Ergin, R., Meir, I., Ilkbasaran, D., Padden, C., & Jackendoff, R. (2018). The Development of Argument Structure in Central Taurus Sign Language. Sign Language & Linguistics, 18(4), 612-639. doi:10.1353/sls.2018.0018.

    Abstract

    One of the fundamental issues for a language is its capacity to express
    argument structure unambiguously. This study presents evidence
    for the emergence and the incremental development of these
    basic mechanisms in a newly developing language, Central Taurus
    Sign Language. Our analyses identify universal patterns in both the
    emergence and development of these mechanisms and in languagespecific
    trajectories.
  • Ernestus, M. (2014). Acoustic reduction and the roles of abstractions and exemplars in speech processing. Lingua, 142, 27-41. doi:10.1016/j.lingua.2012.12.006.

    Abstract

    Acoustic reduction refers to the frequent phenomenon in conversational speech that words are produced with fewer or lenited segments compared to their citation forms. The few published studies on the production and comprehension of acoustic reduction have important implications for the debate on the relevance of abstractions and exemplars in speech processing. This article discusses these implications. It first briefly introduces the key assumptions of simple abstractionist and simple exemplar-based models. It then discusses the literature on acoustic reduction and draws the conclusion that both types of models need to be extended to explain all findings. The ultimate model should allow for the storage of different pronunciation variants, but also reserve an important role for phonetic implementation. Furthermore, the recognition of a highly reduced pronunciation variant requires top down information and leads to activation of the corresponding unreduced variant, the variant that reaches listeners’ consciousness. These findings are best accounted for in hybrids models, assuming both abstract representations and exemplars. None of the hybrid models formulated so far can account for all data on reduced speech and we need further research for obtaining detailed insight into how speakers produce and listeners comprehend reduced speech.
  • Estruch, S. B., Graham, S. A., Quevedo, M., Vino, A., Dekkers, D. H. W., Deriziotis, P., Sollis, E., Demmers, J., Poot, R. A., & Fisher, S. E. (2018). Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Human Molecular Genetics, 27(7), 1212-1227. doi:10.1093/hmg/ddy035.

    Abstract

    FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-established roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.
  • Estruch, S. B. (2018). Characterization of transcription factors in monogenic disorders of speech and language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Evans, N., Bergqvist, H., & San Roque, L. (2018). The grammar of engagement I: Framework and initial exemplification. Language and Cognition, 10, 110-140. doi:10.1017/langcog.2017.21.

    Abstract

    Human language offers rich ways to track, compare, and engage the attentional and epistemic states of interlocutors. While this task is central to everyday communication, our knowledge of the cross-linguistic grammatical means that target such intersubjective coordination has remained basic. In two serialised papers, we introduce the term ‘engagement’ to refer to grammaticalised means for encoding the relative mental directedness of speaker and addressee towards an entity or state of affairs, and describe examples of engagement systems from around the world. Engagement systems express the speaker’s assumptions about the degree to which their attention or knowledge is shared (or not shared) by the addressee. Engagement categories can operate at the level of entities in the here-and-now (deixis), in the unfolding discourse (definiteness vs indefiniteness), entire event-depicting propositions (through markers with clausal scope), and even metapropositions (potentially scoping over evidential values). In this first paper, we introduce engagement and situate it with respect to existing work on intersubjectivity in language. We then explore the key role of deixis in coordinating attention and expressing engagement, moving through increasingly intercognitive deictic systems from those that focus on the the location of the speaker, to those that encode the attentional state of the addressee.
  • Evans, N., Bergqvist, H., & San Roque, L. (2018). The grammar of engagement II: Typology and diachrony. Language and Cognition, 10(1), 141-170. doi:10.1017/langcog.2017.22.

    Abstract

    Engagement systems encode the relative accessibility of an entity or state of affairs to the speaker and addressee, and are thus underpinned by our social cognitive capacities. In our first foray into engagement (Part 1), we focused on specialised semantic contrasts as found in entity-level deictic systems, tailored to the primal scenario for establishing joint attention. This second paper broadens out to an exploration of engagement at the level of events and even metapropositions, and comments on how such systems may evolve. The languages Andoke and Kogi demonstrate what a canonical system of engagement with clausal scope looks like, symmetrically assigning ‘knowing’ and ‘unknowing’ values to speaker and addressee. Engagement is also found cross-cutting other epistemic categories such as evidentiality, for example where a complex assessment of relative speaker and addressee awareness concerns the source of information rather than the proposition itself. Data from the language Abui reveal that one way in which engagement systems can develop is by upscoping demonstratives, which normally denote entities, to apply at the level of events. We conclude by stressing the need for studies that focus on what difference it makes, in terms of communicative behaviour, for intersubjective coordination to be managed by engagement systems as opposed to other, non-grammaticalised means.
  • Evans, S., McGettigan, C., Agnew, Z., Rosen, S., Cesar, L., Boebinger, D., Ostarek, M., Chen, S. H., Richards, A., Meekins, S., & Scott, S. K. (2014). The neural basis of informational and energetic masking effects in the perception and production of speech [abstract]. The Journal of the Acoustical Society of America, 136(4), 2243. doi:10.1121/1.4900096.

    Abstract

    When we have spoken conversations, it is usually in the context of competing sounds within our environment. Speech can be masked by many different kinds of sounds, for example, machinery noise and the speech of others, and these different sounds place differing demands on cognitive resources. In this talk, I will present data from a series of functional magnetic resonance imaging (fMRI) studies in which the informational properties of background sounds have been manipulated to make them more or less similar to speech. I will demonstrate the neural effects associated with speaking over and listening to these sounds, and demonstrate how in perception these effects are modulated by the age of the listener. The results will be interpreted within a framework of auditory processing developed from primate neurophysiology and human functional imaging work (Rauschecker and Scott 2009).
  • Faber, M., Mak, M., & Willems, R. M. (2020). Word skipping as an indicator of individual reading style during literary reading. Journal of Eye Movement Research, 13(3): 2. doi:10.16910/jemr.13.3.2.

    Abstract

    Decades of research have established that the content of language (e.g. lexical characteristics of words) predicts eye movements during reading. Here we investigate whether there exist individual differences in ‘stable’ eye movement patterns during narrative reading. We computed Euclidean distances from correlations between gaze durations time courses (word level) across 102 participants who each read three literary narratives in Dutch. The resulting distance matrices were compared between narratives using a Mantel test. The results show that correlations between the scaling matrices of different narratives are relatively weak (r ≤ .11) when missing data points are ignored. However, when including these data points as zero durations (i.e. skipped words), we found significant correlations between stories (r > .51). Word skipping was significantly positively associated with print exposure but not with self-rated attention and story-world absorption, suggesting that more experienced readers are more likely to skip words, and do so in a comparable fashion. We interpret this finding as suggesting that word skipping might be a stable individual eye movement pattern.
  • Fairs, A., Bögels, S., & Meyer, A. S. (2018). Dual-tasking with simple linguistic tasks: Evidence for serial processing. Acta Psychologica, 191, 131-148. doi:10.1016/j.actpsy.2018.09.006.

    Abstract

    In contrast to the large amount of dual-task research investigating the coordination of a linguistic and a nonlinguistic
    task, little research has investigated how two linguistic tasks are coordinated. However, such research
    would greatly contribute to our understanding of how interlocutors combine speech planning and listening in
    conversation. In three dual-task experiments we studied how participants coordinated the processing of an
    auditory stimulus (S1), which was either a syllable or a tone, with selecting a name for a picture (S2). Two SOAs,
    of 0 ms and 1000 ms, were used. To vary the time required for lexical selection and to determine when lexical
    selection took place, the pictures were presented with categorically related or unrelated distractor words. In
    Experiment 1 participants responded overtly to both stimuli. In Experiments 2 and 3, S1 was not responded to
    overtly, but determined how to respond to S2, by naming the picture or reading the distractor aloud. Experiment
    1 yielded additive effects of SOA and distractor type on the picture naming latencies. The presence of semantic
    interference at both SOAs indicated that lexical selection occurred after response selection for S1. With respect to
    the coordination of S1 and S2 processing, Experiments 2 and 3 yielded inconclusive results. In all experiments,
    syllables interfered more with picture naming than tones. This is likely because the syllables activated phonological
    representations also implicated in picture naming. The theoretical and methodological implications of the
    findings are discussed.

    Additional information

    1-s2.0-S0001691817305589-mmc1.pdf
  • Favier, S. (2020). Individual differences in syntactic knowledge and processing: Exploring the role of literacy experience. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Fazekas, J., Jessop, A., Pine, J., & Rowland, C. F. (2020). Do children learn from their prediction mistakes? A registered report evaluating error-based theories of language acquisition. Royal Society Open Science, 7(11): 180877. doi:10.1098/rsos.180877.

    Abstract

    Error-based theories of language acquisition suggest that children, like adults, continuously make and evaluate predictions in order to reach an adult-like state of language use. However, while these theories have become extremely influential, their central claim - that unpredictable
    input leads to higher rates of lasting change in linguistic representations – has scarcely been
    tested. We designed a prime surprisal-based intervention study to assess this claim.
    As predicted, both 5- to 6-year-old children (n=72) and adults (n=72) showed a pre- to post-test shift towards producing the dative syntactic structure they were exposed to in surprising sentences. The effect was significant in both age groups together, and in the child group separately when participants with ceiling performance in the pre-test were excluded. Secondary
    predictions were not upheld: we found no verb-based learning effects and there was only reliable evidence for immediate prime surprisal effects in the adult, but not in the child group. To our knowledge this is the first published study demonstrating enhanced learning rates for the same syntactic structure when it appeared in surprising as opposed to predictable contexts, thus
    providing crucial support for error-based theories of language acquisition.
  • Felemban, D., Verdonschot, R. G., Iwamoto, Y., Uchiyama, Y., Kakimoto, N., Kreiborg, S., & Murakami, S. (2018). A quantitative experimental phantom study on MRI image uniformity. Dentomaxillofacial Radiology, 47(6): 20180077. doi:10.1259/dmfr.20180077.

    Abstract

    Objectives: Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA).
    Methods: Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method.
    Results: Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals).
    Conclusions: Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
  • Felker, E. R., Troncoso Ruiz, A., Ernestus, M., & Broersma, M. (2018). The ventriloquist paradigm: Studying speech processing in conversation with experimental control over phonetic input. The Journal of the Acoustical Society of America, 144(4), EL304-EL309. doi:10.1121/1.5063809.

    Abstract

    This article presents the ventriloquist paradigm, an innovative method for studying speech processing in dialogue whereby participants interact face-to-face with a confederate who, unbeknownst to them, communicates by playing pre-recorded speech. Results show that the paradigm convinces more participants that the speech is live than a setup without the face-to-face element, and it elicits more interactive conversation than a setup in which participants believe their partner is a computer. By reconciling the ecological validity of a conversational context with full experimental control over phonetic exposure, the paradigm offers a wealth of new possibilities for studying speech processing in interaction.
  • Ferraro, S., Nigri, A., D'incerti, L., Rosazza, C., Sattin, D., Sebastiano, D. R., Visani, E., Duran, D., Marotta, G., De Michelis, G., Catricalà, E., Kotz, S. A., Verga, L., Leonardi, M., Cappa, S. F., & Bruzzone, M. G. (2020). Preservation of language processing and auditory performance in patients with disorders of consciousness: a multimodal assessment. Frontiers in Neurology, 11: 526465. doi:10.3389/fneur.2020.526465.

    Abstract

    The impact of language impairment on the clinical assessment of patients suffering from disorders of consciousness (DOC) is unknown or underestimated, and may mask the presence of conscious behavior. In a group of DOC patients (n=11; time post-injury range:5-252 months), we investigated the main neural functional and structural underpinnings of linguistic processing, and their relationship with the behavioral measures of the auditory function, using the Coma Recovery Scale-Revised (CRS-R). We assessed the integrity of the brainstem auditory pathways, of the left superior temporal gyrus and arcuate fasciculus, the neural activity elicited by passive listening of an auditory language task and the mean hemispheric glucose metabolism.
    Our results support the hypothesis of a relationship between the level of preservation of the investigated structures/functions and the CRS-R auditory subscale scores.
    Moreover, our findings indicate that patients in minimally conscious state minus (MCS-): 1) when presenting the \emph{auditory startle} (at the CRS-R auditory subscale) might be aphasic in the receptive domain, being severely impaired in the core language structures/functions; 2) when presenting the \emph{localization to sound} might retain language processing, being almost intact or intact in the core language structures/functions. Despite the small group of investigated patients, our findings provide a grounding of the clinical measures of the CRS-R auditory subscale in the integrity of the underlying auditory structures/functions. Future studies are needed to confirm our results that might have important consequences for the clinical practice.
  • Filippi, P., Gingras, B., & Fitch, W. T. (2014). Pitch enhancement facilitates word learning across visual contexts. Frontiers in Psychology, 5: 1468. doi:10.3389%2Ffpsyg.2014.01468.

    Abstract

    This study investigates word-learning using a new experimental paradigm that integrates three processes: (a) extracting a word out of a continuous sound sequence, (b) inferring its referential meanings in context, (c) mapping the segmented word onto its broader intended referent, such as other objects of the same semantic category, and to novel utterances. Previous work has examined the role of statistical learning and/or of prosody in each of these processes separately. Here, we combine these strands of investigation into a single experimental approach, in which participants viewed a photograph belonging to one of three semantic categories while hearing a complex, five-word utterance containing a target word. Six between-subjects conditions were tested with 20 adult participants each. In condition 1, the only cue to word-meaning mapping was the co-occurrence of word and referents. This statistical cue was present in all conditions. In condition 2, the target word was sounded at a higher pitch. In condition 3, random words were sounded at a higher pitch, creating an inconsistent cue. In condition 4, the duration of the target word was lengthened. In conditions 5 and 6, an extraneous acoustic cue and a visual cue were associated with the target word, respectively. Performance in this word-learning task was significantly higher than that observed with simple co-occurrence only when pitch prominence consistently marked the target word. We discuss implications for the pragmatic value of pitch marking as well as the relevance of our findings to language acquisition and language evolution.
  • Fisher, S. E., Ciccodicola, A., Tanaka, K., Curci, A., Desicato, S., D'urso, M., & Craig, I. W. (1997). Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp. Genomics, 45, 340-347. doi:10.1006/geno.1997.4941.

    Abstract

    The human Xp11.23-p11.22 interval has been implicated in several inherited diseases including Wiskott-Aldrich syndrome; three forms of X-linked hypercalciuric nephrolithiaisis; and the eye disorders retinitis pigmentosa 2, congenital stationary night blindness, and Aland Island eye disease. In constructing YAC contigs spanning Xp11. 23-p11.22, we have previously shown that the region around the synaptophysin (SYP) gene is refractory to cloning in YACs, but highly stable in cosmids. Preliminary analysis of the latter suggested that this might reflect a high density of coding sequences and we therefore undertook the complete sequencing of a SYP-containing cosmid. Sequence data were extensively analyzed using computer programs such as CENSOR (to mask repeats), BLAST (for homology searches), and GRAIL and GENE-ID (to predict exons). This revealed the presence of 29 putative exons, organized into three genes, in addition to the 7 exons of the complete SYP coding region, all mapping within a 44-kb interval. Two genes are novel, one (CACNA1F) showing high homology to alpha1 subunits of calcium channels, the other (LMO6) encoding a product with significant similarity to LIM-domain proteins. RT-PCR and Northern blot studies confirmed that these loci are indeed transcribed. The third locus is the previously described, but not previously localized, A4 differentiation-dependent gene. Given that the intron-exon boundaries predicted by the analysis are consistent with previous information where available, we have been able to suggest the genomic organization of the novel genes with some confidence. The region has an elevated GC content (>53%), and we identified CpG islands associated with the 5' ends of SYP, A4, and LMO6. The order of loci was Xpter-A4-LMO6-SYP-CACNA1F-Xcen, with intergenic distances ranging from approximately 300 bp to approximately 5 kb. The density of transcribed sequences in this area (>80%) is comparable to that found in the highly gene-rich chromosomal band Xq28. Further studies may aid our understanding of the long-range organization surrounding such gene-enriched regions.
  • Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.

    Abstract

    Language processing involves the ability to store and integrate pieces of
    information in working memory over short periods of time. According to
    the dominant view, information is maintained through sustained, elevated
    neural activity. Other work has argued that short-term synaptic facilitation
    can serve as a substrate of memory. Here, we propose an account where
    memory is supported by intrinsic plasticity that downregulates neuronal
    firing rates. Single neuron responses are dependent on experience and we
    show through simulations that these adaptive changes in excitability pro-
    vide memory on timescales ranging from milliseconds to seconds. On this
    account, spiking activity writes information into coupled dynamic variables
    that control adaptation and move at slower timescales than the membrane
    potential. From these variables, information is continuously read back into
    the active membrane state for processing. This neuronal memory mech-
    anism does not rely on persistent activity, excitatory feedback, or synap-
    tic plasticity for storage. Instead, information is maintained in adaptive
    conductances that reduce firing rates and can be accessed directly with-
    out cued retrieval. Memory span is systematically related to both the time
    constant of adaptation and baseline levels of neuronal excitability. Inter-
    ference effects within memory arise when adaptation is long-lasting. We
    demonstrate that this mechanism is sensitive to context and serial order
    which makes it suitable for temporal integration in sequence processing
    within the language domain. We also show that it enables the binding of
    linguistic features over time within dynamic memory registers. This work
    provides a step towards a computational neurobiology of language.
  • FitzPatrick, I., & Indefrey, P. (2014). Head start for target language in bilingual listening. Brain Research, 1542, 111-130. doi:10.1016/j.brainres.2013.10.014.

    Abstract

    In this study we investigated the availability of non-target language semantic features in bilingual speech processing. We recorded EEG from Dutch-English bilinguals who listened to spoken sentences in their L2 (English) or L1 (Dutch). In Experiments 1 and 3 the sentences contained an interlingual homophone. The sentence context was either biased towards the target language meaning of the homophone (target biased), the non-target language meaning (non-target biased), or neither meaning of the homophone (fully incongruent). These conditions were each compared to a semantically congruent control condition. In L2 sentences we observed an N400 in the non-target biased condition that had an earlier offset than the N400 to fully incongruent homophones. In the target biased condition, a negativity emerged that was later than the N400 to fully incongruent homophones. In L1 contexts, neither target biased nor non-target biased homophones yielded significant N400 effects (compared to the control condition). In Experiments 2 and 4 the sentences contained a language switch to a non-target language word that could be semantically congruent or incongruent. Semantically incongruent words (switched, and non-switched) elicited an N400 effect. The N400 to semantically congruent language-switched words had an earlier offset than the N400 to incongruent words. Both congruent and incongruent language switches elicited a Late Positive Component (LPC). These findings show that bilinguals activate both meanings of interlingual homophones irrespective of their contextual fit. In L2 contexts, the target-language meaning of the homophone has a head start over the non-target language meaning. The target-language head start is also evident for language switches from both L2-to-L1 and L1-to-L2
  • Flecken, M., & Van Bergen, G. (2020). Can the English stand the bottle like the Dutch? Effects of relational categories on object perception. Cognitive Neuropsychology, 37(5-6), 271-287. doi:10.1080/02643294.2019.1607272.

    Abstract

    Does language influence how we perceive the world? This study examines how linguistic encoding of relational information by means of verbs implicitly affects visual processing, by measuring perceptual judgements behaviourally, and visual perception and attention in EEG. Verbal systems can vary cross-linguistically: Dutch uses posture verbs to describe inanimate object configurations (the bottle stands/lies on the table). In English, however, such use of posture verbs is rare (the bottle is on the table). Using this test case, we ask (1) whether previously attested language-perception interactions extend to more complex domains, and (2) whether differences in linguistic usage probabilities affect perception. We report three nonverbal experiments in which Dutch and English participants performed a picture-matching task. Prime and target pictures contained object configurations (e.g., a bottle on a table); in the critical condition, prime and target showed a mismatch in object position (standing/lying). In both language groups, we found similar responses, suggesting that probabilistic differences in linguistic encoding of relational information do not affect perception.
  • Flecken, M., von Stutterheim, C., & Carroll, M. (2014). Grammatical aspect influences motion event perception: Evidence from a cross-linguistic non-verbal recognition task. Language and Cognition, 6(1), 45-78. doi:10.1017/langcog.2013.2.

    Abstract

    Using eye-tracking as a window on cognitive processing, this study investigates language effects on attention to motion events in a non-verbal task. We compare gaze allocation patterns by native speakers of German and Modern Standard Arabic (MSA), two languages that differ with regard to the grammaticalization of temporal concepts. Findings of the non-verbal task, in which speakers watch dynamic event scenes while performing an auditory distracter task, are compared to gaze allocation patterns which were obtained in an event description task, using the same stimuli. We investigate whether differences in the grammatical aspectual systems of German and MSA affect the extent to which endpoints of motion events are linguistically encoded and visually processed in the two tasks. In the linguistic task, we find clear language differences in endpoint encoding and in the eye-tracking data (attention to event endpoints) as well: German speakers attend to and linguistically encode endpoints more frequently than speakers of MSA. The fixation data in the non-verbal task show similar language effects, providing relevant insights with regard to the language-and-thought debate. The present study is one of the few studies that focus explicitly on language effects related to grammatical concepts, as opposed to lexical concepts.
  • Fleur, D. S., Flecken, M., Rommers, J., & Nieuwland, M. S. (2020). Definitely saw it coming? The dual nature of the pre-nominal prediction effect. Cognition, 204: 104335. doi:10.1016/j.cognition.2020.104335.

    Abstract

    In well-known demonstrations of lexical prediction during language comprehension, pre-nominal articles that mismatch a likely upcoming noun's gender elicit different neural activity than matching articles. However, theories differ on what this pre-nominal prediction effect means and on what is being predicted. Does it reflect mismatch with a predicted article, or ‘merely’ revision of the noun prediction? We contrasted the ‘article prediction mismatch’ hypothesis and the ‘noun prediction revision’ hypothesis in two ERP experiments on Dutch mini-story comprehension, with pre-registered data collection and analyses. We capitalized on the Dutch gender system, which marks gender on definite articles (‘de/het’) but not on indefinite articles (‘een’). If articles themselves are predicted, mismatching gender should have little effect when readers expected an indefinite article without gender marking. Participants read contexts that strongly suggested either a definite or indefinite noun phrase as its best continuation, followed by a definite noun phrase with the expected noun or an unexpected, different gender noun phrase (‘het boek/de roman’, the book/the novel). Experiment 1 (N = 48) showed a pre-nominal prediction effect, but evidence for the article prediction mismatch hypothesis was inconclusive. Informed by exploratory analyses and power analyses, direct replication Experiment 2 (N = 80) yielded evidence for article prediction mismatch at a newly pre-registered occipital region-of-interest. However, at frontal and posterior channels, unexpectedly definite articles also elicited a gender-mismatch effect, and this support for the noun prediction revision hypothesis was further strengthened by exploratory analyses: ERPs elicited by gender-mismatching articles correlated with incurred constraint towards a new noun (next-word entropy), and N400s for initially unpredictable nouns decreased when articles made them more predictable. By demonstrating its dual nature, our results reconcile two prevalent explanations of the pre-nominal prediction effect.
  • Floyd, S. (2014). [Review of the book Flexible word classes: Typological studies of underspecified parts of speech ed. by Jan Rijkhoff and Eva van Lier]. Linguistics, 52, 1499-1502. doi:10.1515/ling-2014-0027.
  • Floyd, S., San Roque, L., & Majid, A. (2018). Smell is coded in grammar and frequent in discourse: Cha'palaa olfactory language in cross-linguistic perspective. Journal of Linguistic Anthropology, 28(2), 175-196. doi:10.1111/jola.12190.

    Abstract

    It has long been claimed that there is no lexical field of smell, and that smell is of too little validity to be expressed in grammar. We demonstrate both claims are false. The Cha'palaa language (Ecuador) has at least 15 abstract smell terms, each of which is formed using a type of classifier previously thought not to exist. Moreover, using conversational corpora we show that Cha'palaa speakers also talk about smell more than Imbabura Quechua and English speakers. Together, this shows how language and social interaction may jointly reflect distinct cultural orientations towards sensory experience in general and olfaction in particular.
  • Floyd, S., Rossi, G., Baranova, J., Blythe, J., Dingemanse, M., Kendrick, K. H., Zinken, J., & Enfield, N. J. (2018). Universals and cultural diversity in the expression of gratitude. Royal Society Open Science, 5: 180391. doi:10.1098/rsos.180391.

    Abstract

    Gratitude is argued to have evolved to motivate and maintain social reciprocity among people, and to be linked to a wide range of positive effects — social, psychological, and even physical. But is socially reciprocal behaviour dependent on the expression of gratitude, for example by saying "thank you" as in English? Current research has not included cross-cultural elements, and has tended to conflate gratitude as an emotion with gratitude as a linguistic practice, as might appear to be the case in English. Here we ask to what extent people actually express gratitude in different societies by focussing on episodes of everyday life where someone obtains a good, service, or support from another, and comparing these episodes across eight languages from five continents. What we find is that expressions of gratitude in these episodes are remarkably rare, suggesting that social reciprocity in everyday life relies on tacit understandings of people’s rights and duties surrounding mutual assistance and collaboration. At the same time, we also find minor cross-cultural variation, with slightly higher rates in Western European languages English and Italian, showing that universal tendencies of social reciprocity should not be conflated with more culturally variable practices of expressing gratitude. Our study complements previous experimental and culture-specific research on social reciprocity with a systematic comparison of audiovisual corpora of naturally occurring social interaction from different cultures from around the world.
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • Forkel, S. J., Rogalski, E., Drossinos Sancho, N., D'Anna, L., Luque Laguna, P., Sridhar, J., Dell'Acqua, F., Weintraub, S., Thompson, C., Mesulam, M.-M., & Catani, M. (2020). Anatomical evidence of an indirect pathway for word repetition. Neurology, 94, e594-e606. doi:10.1212/WNL.0000000000008746.

    Abstract



    Objective: To combine MRI-based cortical morphometry and diffusion white matter tractography to describe the anatomical correlates of repetition deficits in patients with primary progressive aphasia (PPA).

    Methods: The traditional anatomical model of language identifies a network for word repetition that includes Wernicke and Broca regions directly connected via the arcuate fasciculus. Recent tractography findings of an indirect pathway between Wernicke and Broca regions suggest a critical role of the inferior parietal lobe for repetition. To test whether repetition deficits are associated with damage to the direct or indirect pathway between both regions, tractography analysis was performed in 30 patients with PPA (64.27 ± 8.51 years) and 22 healthy controls. Cortical volume measurements were also extracted from 8 perisylvian language areas connected by the direct and indirect pathways.

    Results: Compared to healthy controls, patients with PPA presented with reduced performance in repetition tasks and increased damage to most of the perisylvian cortical regions and their connections through the indirect pathway. Repetition deficits were prominent in patients with cortical atrophy of the temporo-parietal region with volumetric reductions of the indirect pathway.

    Conclusions: The results suggest that in PPA, deficits in repetition are due to damage to the temporo-parietal cortex and its connections to Wernicke and Broca regions. We therefore propose a revised language model that also includes an indirect pathway for repetition, which has important clinical implications for the functional mapping and treatment of neurologic patients.
  • Forkel, S. J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy, D. G. M., Williams, S. C. R., & Catani, M. (2014). Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain, 137, 2027-2039. doi:10.1093/brain/awu113.

    Abstract

    Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke’s to Broca’s region (i.e. long segment), Wernicke’s to Geschwind’s region (i.e. posterior segment) and Broca’s to Geschwind’s region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28–87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = −0.630, t(−3.129), P = 0.011]. For the right hemisphere, age [beta = −0.678, t(–3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.

    Additional information

    supplementary information
  • Forkel, S. J. (2014). Identification of anatomical predictors of language recovery after stroke with diffusion tensor imaging. PhD Thesis, King's College London, London.

    Abstract

    Background Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. However, the predictors of recovery are still poorly understood. Anatomical variability of the arcuate fasciculus, connecting Broca’s and Wernicke’s areas, has been reported in the healthy population using diffusion tensor imaging tractography. In about 40% of the population the arcuate fasciculus is bilateral and this pattern is advantageous for certain language related functions, such as auditory verbal learning (Catani et al. 2007). Methods In this prospective longitudinal study, anatomical predictors of post-stroke aphasia recovery were investigated using diffusion tractography and arterial spin labelling. Patients An 18-subject strong aphasia cohort with first-ever unilateral left hemispheric middle cerebral artery infarcts underwent post stroke language (mean 5±5 days) and neuroimaging (mean 10±6 days) assessments and neuropsychological follow-up at six months. Ten of these patients were available for reassessment one year after symptom onset. Aphasia was assessed with the Western Aphasia Battery, which provides a global measure of severity (Aphasia Quotient, AQ). Results Better recover from aphasia was observed in patients with a right arcuate fasciculus [beta=.730, t(2.732), p=.020] (tractography) and increased fractional anisotropy in the right hemisphere (p<0.05) (Tract-based spatial statistics). Further, an increase in left hemisphere perfusion was observed after one year (p<0.01) (perfusion). Lesion analysis identified maximal overlay in the periinsular white matter (WM). Lesion-symptom mapping identified damage to periinsular structure as predictive for overall aphasia severity and damage to frontal lobe white matter as predictive of repetition deficits. Conclusion These findings suggest an important role for the right hemisphere language network in recovery from aphasia after left hemispheric stroke.

    Additional information

    Link to repository
  • Forkel, S. J., & Catani, M. (2018). Lesion mapping in acute stroke aphasia and its implications for recovery. Neuropsychologia, 115, 88-100. doi:10.1016/j.neuropsychologia.2018.03.036.

    Abstract

    Patients with stroke offer a unique window into understanding human brain function. Mapping stroke lesions poses several challenges due to the complexity of the lesion anatomy and the mechanisms causing local and remote disruption on brain networks. In this prospective longitudinal study, we compare standard and advanced approaches to white matter lesion mapping applied to acute stroke patients with aphasia. Eighteen patients with acute left hemisphere stroke were recruited and scanned within two weeks from symptom onset. Aphasia assessment was performed at baseline and six-month follow-up. Structural and diffusion MRI contrasts indicated an area of maximum overlap in the anterior external/extreme capsule with diffusion images showing a larger overlap extending into posterior perisylvian regions. Anatomical predictors of recovery included damage to ipsilesional tracts (as shown by both structural and diffusion images) and contralesional tracts (as shown by diffusion images only). These findings indicate converging results from structural and diffusion lesion mapping methods but also clear differences between the two approaches in their ability to identify predictors of recovery outside the lesioned regions.
  • Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell'Acqua, F., Danek, A., & Catani, M. (2014). The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56, 73-84. doi:10.1016/j.cortex.2012.09.005.

    Abstract

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top–down modulation of early visual processing.

    Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the ‘inferior fronto-occipital fasciculus’ (iFOF) has not been demonstrated. Conversely, a ‘superior fronto-occipital fasciculus’ (sFOF), also referred to as ‘subcallosal bundle’ by some authors, is reported in monkey axonal tracing studies but not in human dissections.

    In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the ‘subcallosal bundle’ in animals (1893).

    Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an ‘occipital extension’ of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract.

    In conclusion, our experimental findings and review of the literature suggest that a ventral pathway in humans, namely the iFOF, mediates a direct communication between occipital and frontal lobes. Whether the iFOF represents a unique human pathway awaits further ad hoc investigations in animals.
  • Forkel, S. J., & Thiebaut de Schotten, M. (2020). Towards metabolic disconnection – symptom mapping. Brain, 143(3), 718-721. doi:10.1093/brain/awaa060.

    Abstract

    This scientific commentary refers to ‘Metabolic lesion-deficit mapping of human cognition’ by Jha etal.
  • Fox, N. P., Leonard, M., Sjerps, M. J., & Chang, E. F. (2020). Transformation of a temporal speech cue to a spatial neural code in human auditory cortex. eLife, 9: e53051. doi:10.7554/eLife.53051.

    Abstract

    In speech, listeners extract continuously-varying spectrotemporal cues from the acoustic signal to perceive discrete phonetic categories. Spectral cues are spatially encoded in the amplitude of responses in phonetically-tuned neural populations in auditory cortex. It remains unknown whether similar neurophysiological mechanisms encode temporal cues like voice-onset time (VOT), which distinguishes sounds like /b/ and/p/. We used direct brain recordings in humans to investigate the neural encoding of temporal speech cues with a VOT continuum from /ba/ to /pa/. We found that distinct neural populations respond preferentially to VOTs from one phonetic category, and are also sensitive to sub-phonetic VOT differences within a population’s preferred category. In a simple neural network model, simulated populations tuned to detect either temporal gaps or coincidences between spectral cues captured encoding patterns observed in real neural data. These results demonstrate that a spatial/amplitude neural code underlies the cortical representation of both spectral and temporal speech cues.

    Additional information

    Data and code
  • Frances, C., Costa, A., & Baus, C. (2018). On the effects of regional accents on memory and credibility. Acta Psychologica, 186, 63-70. doi:10.1016/j.actpsy.2018.04.003.

    Abstract

    The information we obtain from how speakers sound—for example their accent—affects how we interpret the messages they convey. A clear example is foreign accented speech, where reduced intelligibility and speaker's social categorization (out-group member) affect memory and the credibility of the message (e.g., less trustworthiness). In the present study, we go one step further and ask whether evaluations of messages are also affected by regional accents—accents from a different region than the listener. In the current study, we report results from three experiments on immediate memory recognition and immediate credibility assessments as well as the illusory truth effect. These revealed no differences between messages conveyed in local—from the same region as the participant—and regional accents—from native speakers of a different country than the participants. Our results suggest that when the accent of a speaker has high intelligibility, social categorization by accent does not seem to negatively affect how we treat the speakers' messages.
  • Frances, C., De Bruin, A., & Duñabeitia, J. A. (2020). The influence of emotional and foreign language context in content learning. Studies in Second Language Acquisition, 42(4), 891-903.
  • Frances, C., Martin, C. D., & Andoni, D. J. (2020). The effects of contextual diversity on incidental vocabulary learning in the native and a foreign language. Scientific Reports, 10: 13967. doi:10.1038/s41598-020-70922-1.

    Abstract

    Vocabulary learning occurs throughout the lifespan, often implicitly. For foreign language learners,
    this is particularly challenging as they must acquire a large number of new words with little exposure.
    In the present study, we explore the effects of contextual diversity—namely, the number of texts a
    word appears in—on native and foreign language word learning. Participants read several texts that
    had novel pseudowords replacing high-frequency words. The total number of encounters with the
    novel words was held constant, but they appeared in 1, 2, 4, or 8 texts. In addition, some participants
    read the texts in Spanish (their native language) and others in English (their foreign language). We
    found that increasing contextual diversity improved recall and recognition of the word, as well as the
    ability to match the word with its meaning while keeping comprehension unimpaired. Using a foreign
    language only affected performance in the matching task, where participants had to quickly identify
    the meaning of the word. Results are discussed in the greater context of the word learning and foreign
    language literature as well as their importance as a teaching tool.
  • Frances, C., Pueyo, S., Anaya, V., & Dunabeitia Landaburu, J. A. (2020). Interpreting foreign smiles: language context and type of scale in the assessment of perceived happiness and sadness. Psicológica, 41, 21-38. doi:10.2478/psicolj-2020-0002.

    Abstract

    The current study focuses on how different scales with varying demands can
    affect our subjective assessments. We carried out 2 experiments in which we
    asked participants to rate how happy or sad morphed images of faces looked.
    The two extremes were the original happy and original sad faces with 4
    morphs in between. We manipulated language of the task—namely, half of
    the participants carried it out in their native language, Spanish, and the other
    half in their foreign language, English—and type of scale. Within type of
    scale, we compared verbal and brightness scales. We found that, while
    language did not have an effect on the assessment, type of scale did. The
    brightness scale led to overall higher ratings, i.e., assessing all faces as
    somewhat happier. This provides a limitation on the foreign language effect,
    as well as evidence for the influence of the cognitive demands of a scale on
    emotionality assessments.
  • Frances, C., Costa, A., & Baus, C. (2018). On the effects of regional accents on memory and credibility. Acta Psychologica, 186, 63-70. doi:10.1016/j.actpsy.2018.04.003.

    Abstract

    The information we obtain from how speakers sound—for example their accent—affects how we interpret the
    messages they convey. A clear example is foreign accented speech, where reduced intelligibility and speaker's
    social categorization (out-group member) affect memory and the credibility of the message (e.g., less trust-
    worthiness). In the present study, we go one step further and ask whether evaluations of messages are also
    affected by regional accents—accents from a different region than the listener. In the current study, we report
    results from three experiments on immediate memory recognition and immediate credibility assessments as well
    as the illusory truth effect. These revealed no differences between messages conveyed in local—from the same
    region as the participant—and regional accents—from native speakers of a different country than the partici-
    pants. Our results suggest that when the accent of a speaker has high intelligibility, social categorization by
    accent does not seem to negatively affect how we treat the speakers' messages.
  • Frances, C., De Bruin, A., & Duñabeitia, J. A. (2020). The effects of language and emotionality of stimuli on vocabulary learning. PLoS One, 15(10): e0240252. doi:10.1371/journal.pone.0240252.

    Abstract

    Learning new content and vocabulary in a foreign language can be particularly difficult. Yet,
    there are educational programs that require people to study in a language they are not
    native speakers of. For this reason, it is important to understand how these learning processes work and possibly differ from native language learning, as well as to develop strategies to ease this process. The current study takes advantage of emotionality—operationally
    defined as positive valence and high arousal—to improve memory. In two experiments, the
    present paper addresses whether participants have more difficulty learning the names of
    objects they have never seen before in their foreign language and whether embedding them
    in a positive semantic context can help make learning easier. With this in mind, we had participants (with a minimum of a B2 level of English) in two experiments (43 participants in
    Experiment 1 and 54 in Experiment 2) read descriptions of made-up objects—either positive
    or neutral and either in their native or a foreign language. The effects of language varied
    with the difficulty of the task and measure used. In both cases, learning the words in a positive context improved learning. Importantly, the effect of emotionality was not modulated by
    language, suggesting that the effects of emotionality are independent of language and could
    potentially be a useful tool for improving foreign language vocabulary learning.

    Additional information

    Supporting information
  • Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.

    Abstract

    The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers.
  • Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrainment during speech comprehension. PLoS One, 13(5): e0197304. doi:10.1371/journal.pone.0197304.

    Abstract

    Results from a recent neuroimaging study on spoken sentence comprehension have been interpreted as evidence for cortical entrainment to hierarchical syntactic structure. We present a simple computational model that predicts the power spectra from this study, even
    though the model's linguistic knowledge is restricted to the lexical level, and word-level representations are not combined into higher-level units (phrases or sentences). Hence, the
    cortical entrainment results can also be explained from the lexical properties of the stimuli, without recourse to hierarchical syntax.
  • Franken, M. K. (2018). Listening for speaking: Investigations of the relationship between speech perception and production. PhD Thesis, Radboud University, Nijmegen.

    Abstract

    Speaking and listening are complex tasks that we perform on a daily basis, almost without conscious effort. Interestingly, speaking almost never occurs without listening: whenever we speak, we at least hear our own speech. The research in this thesis is concerned with how the perception of our own speech influences our speaking behavior. We show that unconsciously, we actively monitor this auditory feedback of our own speech. This way, we can efficiently take action and adapt articulation when an error occurs and auditory feedback does not correspond to our expectation. Processing the auditory feedback of our speech does not, however, automatically affect speech production. It is subject to a number of constraints. For example, we do not just track auditory feedback, but also its consistency. If auditory feedback is more consistent over time, it has a stronger influence on speech production. In addition, we investigated how auditory feedback during speech is processed in the brain, using magnetoencephalography (MEG). The results suggest the involvement of a broad cortical network including both auditory and motor-related regions. This is consistent with the view that the auditory center of the brain is involved in comparing auditory feedback to our expectation of auditory feedback. If this comparison yields a mismatch, motor-related regions of the brain can be recruited to alter the ongoing articulations.

    Additional information

    full text via Radboud Repository
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458-1467. doi:10.3758/s13423-018-1494-x.

    Abstract

    When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some speakers follow the perturbation. In the current study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is given. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: It initially responds by doing the opposite of what it was doing. This effect and the non-trivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production-system’s state at the time of perturbation.
  • Franken, M. K., Eisner, F., Acheson, D. J., McQueen, J. M., Hagoort, P., & Schoffelen, J.-M. (2018). Self-monitoring in the cerebral cortex: Neural responses to pitch-perturbed auditory feedback during speech production. NeuroImage, 179, 326-336. doi:10.1016/j.neuroimage.2018.06.061.

    Abstract

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing.
  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.

    Abstract

    Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
  • Friederici, A., & Levelt, W. J. M. (1987). Resolving perceptual conflicts: The cognitive mechanism of spatial orientation. Aviation, Space, and Environmental Medicine, 58(9), A164-A169.
  • Friedrich, P., Thiebaut de Schotten, M., Forkel, S. J., Stacho, M., & Howells, H. (2020). An ancestral anatomical and spatial bias for visually guided behavior. PNAS, 117(5), 2251-2252. doi:10.1073/pnas.1918402117.

    Abstract

    Human behavioral asymmetries are commonly studied in the context of structural cortical and connectional asymmetries. Within this framework, Sreenivasan and Sridharan (1) provide intriguing evidence of a relationship between visual asymmetries and the lateralization of superior colliculi connections—a phylogenetically older mesencephalic structure. Specifically, response facilitation for cued locations (i.e., choice bias) in the contralateral hemifield was associated with differences in the connectivity of the superior colliculus. Given that the superior colliculus has a structural homolog—the optic tectum—which can be traced across all Vertebrata, these results may have meaningful evolutionary ramifications.
  • Friedrich, P., Forkel, S. J., & Thiebaut de Schotten, M. (2020). Mapping the principal gradient onto the corpus callosum. NeuroImage, 223: 117317. doi:10.1016/j.neuroimage.2020.117317.

    Abstract

    Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.

    Additional information

    supplementary file
  • Frost, R. (2014). Learning grammatical structures with and without sleep. PhD Thesis, Lancaster University, Lancaster.
  • Frost, R. L. A., Dunn, K., Christiansen, M. H., Gómez, R. L., & Monaghan, P. (2020). Exploring the "anchor word" effect in infants: Segmentation and categorisation of speech with and without high frequency words. PLoS One, 15(12): e0243436. doi:10.1371/journal.pone.0243436.

    Abstract

    High frequency words play a key role in language acquisition, with recent work suggesting they may serve both speech segmentation and lexical categorisation. However, it is not yet known whether infants can detect novel high frequency words in continuous speech, nor whether they can use them to help learning for segmentation and categorisation at the same time. For instance, when hearing “you eat the biscuit”, can children use the high-frequency words “you” and “the” to segment out “eat” and “biscuit”, and determine their respective lexical categories? We tested this in two experiments. In Experiment 1, we familiarised 12-month-old infants with continuous artificial speech comprising repetitions of target words, which were preceded by high-frequency marker words that distinguished the targets into two distributional categories. In Experiment 2, we repeated the task using the same language but with additional phonological cues to word and category structure. In both studies, we measured learning with head-turn preference tests of segmentation and categorisation, and compared performance against a control group that heard the artificial speech without the marker words (i.e., just the targets). There was no evidence that high frequency words helped either speech segmentation or grammatical categorisation. However, segmentation was seen to improve when the distributional information was supplemented with phonological cues (Experiment 2). In both experiments, exploratory analysis indicated that infants’ looking behaviour was related to their linguistic maturity (indexed by infants’ vocabulary scores) with infants with high versus low vocabulary scores displaying novelty and familiarity preferences, respectively. We propose that high-frequency words must reach a critical threshold of familiarity before they can be of significant benefit to learning.

    Additional information

    data
  • Frost, R. L. A., Jessop, A., Durrant, S., Peter, M. S., Bidgood, A., Pine, J. M., Rowland, C. F., & Monaghan, P. (2020). Non-adjacent dependency learning in infancy, and its link to language development. Cognitive Psychology, 120: 101291. doi:10.1016/j.cogpsych.2020.101291.

    Abstract

    To acquire language, infants must learn how to identify words and linguistic structure in speech. Statistical learning has been suggested to assist both of these tasks. However, infants’ capacity to use statistics to discover words and structure together remains unclear. Further, it is not yet known how infants’ statistical learning ability relates to their language development. We trained 17-month-old infants on an artificial language comprising non-adjacent dependencies, and examined their looking times on tasks assessing sensitivity to words and structure using an eye-tracked head-turn-preference paradigm. We measured infants’ vocabulary size using a Communicative Development Inventory (CDI) concurrently and at 19, 21, 24, 25, 27, and 30 months to relate performance to language development. Infants could segment the words from speech, demonstrated by a significant difference in looking times to words versus part-words. Infants’ segmentation performance was significantly related to their vocabulary size (receptive and expressive) both currently, and over time (receptive until 24 months, expressive until 30 months), but was not related to the rate of vocabulary growth. The data also suggest infants may have developed sensitivity to generalised structure, indicating similar statistical learning mechanisms may contribute to the discovery of words and structure in speech, but this was not related to vocabulary size.

    Additional information

    Supplementary data
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., & Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports, 4: 5283. doi:10.1038/srep05283.

    Abstract

    Cumulative tool-based culture underwrote our species' evolutionary success and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

    Additional information

    Supplementary Information
  • Furman, R., Kuntay, A., & Ozyurek, A. (2014). Early language-specificity of children's event encoding in speech and gesture: Evidence from caused motion in Turkish. Language, Cognition and Neuroscience, 29, 620-634. doi:10.1080/01690965.2013.824993.

    Abstract

    Previous research on language development shows that children are tuned early on to the language-specific semantic and syntactic encoding of events in their native language. Here we ask whether language-specificity is also evident in children's early representations in gesture accompanying speech. In a longitudinal study, we examined the spontaneous speech and cospeech gestures of eight Turkish-speaking children aged one to three and focused on their caused motion event expressions. In Turkish, unlike in English, the main semantic elements of caused motion such as Action and Path can be encoded in the verb (e.g. sok- ‘put in’) and the arguments of a verb can be easily omitted. We found that Turkish-speaking children's speech indeed displayed these language-specific features and focused on verbs to encode caused motion. More interestingly, we found that their early gestures also manifested specificity. Children used iconic cospeech gestures (from 19 months onwards) as often as pointing gestures and represented semantic elements such as Action with Figure and/or Path that reinforced or supplemented speech in language-specific ways until the age of three. In the light of previous reports on the scarcity of iconic gestures in English-speaking children's early productions, we argue that the language children learn shapes gestures and how they get integrated with speech in the first three years of life.
  • Galbiati, A., Sforza, M., Poletti, M., Verga, L., Zucconi, M., Ferini-Strambi, L., & Castronovo, V. (2020). Insomnia patients with subjective short total sleep time have a boosted response to cognitive behavioral therapy for insomnia despite residual symptoms. Behavioral Sleep Medicine, 18(1), 58-67. doi:10.1080/15402002.2018.1545650.

    Abstract

    Background: Two distinct insomnia disorder (ID) phenotypes have been proposed, distinguished on the basis of an objective total sleep time less or more than 6 hr. In particular, it has been recently reported that patients with objective short sleep duration have a blunted response to cognitive behavioral therapy for insomnia (CBT-I). The aim of this study was to investigate the differences of CBT-I response in two groups of ID patients subdivided according to total sleep time. Methods: Two hundred forty-six ID patients were subdivided into two groups, depending on their reported total sleep time (TST) assessed by sleep diaries. Patients with a TST greater than 6 hr were classified as “normal sleepers” (NS), while those with a total sleep time less than 6 hr were classified as “short sleepers” (SS). Results: The delta between Insomnia Severity Index scores and sleep efficiency at the beginning as compared to the end of the treatment was significantly higher for SS in comparison to NS, even if they still exhibit more insomnia symptoms. No difference was found between groups in terms of remitters; however, more responders were observed in the SS group in comparison to the NS group. Conclusions: Our results demonstrate that ID patients with reported short total sleep time had a beneficial response to CBT-I of greater magnitude in comparison to NS. However, these patients may still experience the presence of residual insomnia symptoms after treatment.
  • Gallotto, S., Duecker, F., Ten Oever, S., Schuhmann, T., De Graaf, T. A., & Sack, A. T. (2020). Relating alpha power modulations to competing visuospatial attention theories. NeuroImage, 207: 116429. doi:10.1016/j.neuroimage.2019.116429.

    Abstract

    Visuospatial attention theories often propose hemispheric asymmetries underlying the control of attention. In general support of these theories, previous EEG/MEG studies have shown that spatial attention is associated with hemispheric modulation of posterior alpha power (gating by inhibition). However, since measures of alpha power are typically expressed as lateralization scores, or collapsed across left and right attention shifts, the individual hemispheric contribution to the attentional control mechanism remains unclear. This is, however, the most crucial and decisive aspect in which the currently competing attention theories continue to disagree. To resolve this long-standing conflict, we derived predictions regarding alpha power modulations from Heilman's hemispatial theory and Kinsbourne's interhemispheric competition theory and tested them empirically in an EEG experiment. We used an attention paradigm capable of isolating alpha power modulation in two attentional states, namely attentional bias in a neutral cue condition and spatial orienting following directional cues. Differential alpha modulations were found for both hemispheres across conditions. When anticipating peripheral visual targets without preceding directional cues (neutral condition), posterior alpha power in the left hemisphere was generally lower and more strongly modulated than in the right hemisphere, in line with the interhemispheric competition theory. Intriguingly, however, while alpha power in the right hemisphere was modulated by both, cue-directed leftward and rightward attention shifts, the left hemisphere only showed modulations by rightward shifts of spatial attention, in line with the hemispatial theory. This suggests that the two theories may not be mutually exclusive, but rather apply to different attentional states.
  • Ganushchak, L., Konopka, A. E., & Chen, Y. (2014). What the eyes say about planning of focused referents during sentence formulation: a cross-linguistic investigation. Frontiers in Psychology, 5: 1124. doi:10.3389/fpsyg.2014.01124.

    Abstract

    This study investigated how sentence formulation is influenced by a preceding discourse context. In two eye-tracking experiments, participants described pictures of two-character transitive events in Dutch (Experiment 1) and Chinese (Experiment 2). Focus was manipulated by presenting questions before each picture. In the Neutral condition, participants first heard ‘What is happening here?’ In the Object or Subject Focus conditions, the questions asked about the Object or Subject character (What is the policeman stopping? Who is stopping the truck?). The target response was the same in all conditions (The policeman is stopping the truck). In both experiments, sentence formulation in the Neutral condition showed the expected pattern of speakers fixating the subject character (policeman) before the object character (truck). In contrast, in the focus conditions speakers rapidly directed their gaze preferentially only to the character they needed to encode to answer the question (the new, or focused, character). The timing of gaze shifts to the new character varied by language group (Dutch vs. Chinese): shifts to the new character occurred earlier when information in the question can be repeated in the response with the same syntactic structure (in Chinese but not in Dutch). The results show that discourse affects the timecourse of linguistic formulation in simple sentences and that these effects can be modulated by language-specific linguistic structures such as parallels in the syntax of questions and declarative sentences.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gao, X., & Jiang, T. (2018). Sensory constraints on perceptual simulation during sentence reading. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 848-855. doi:10.1037/xhp0000475.

    Abstract

    Resource-constrained models of language processing predict that perceptual simulation during language understanding would be compromised by sensory limitations (such as reading text in unfamiliar/difficult font), whereas strong versions of embodied theories of language would predict that simulating perceptual symbols in language would not be impaired even under sensory-constrained situations. In 2 experiments, sensory decoding difficulty was manipulated by using easy and hard fonts to study perceptual simulation during sentence reading (Zwaan, Stanfield, & Yaxley, 2002). Results indicated that simulating perceptual symbols in language was not compromised by surface-form decoding challenges such as difficult font, suggesting relative resilience of embodied language processing in the face of certain sensory constraints. Further implications for learning from text and individual differences in language processing will be discussed
  • Garcia, R., Dery, J. E., Roeser, J., & Höhle, B. (2018). Word order preferences of Tagalog-speaking adults and children. First Language, 38(6), 617-640. doi:10.1177/0142723718790317.

    Abstract

    This article investigates the word order preferences of Tagalog-speaking adults and five- and seven-year-old children. The participants were asked to complete sentences to describe pictures depicting actions between two animate entities. Adults preferred agent-initial constructions in the patient voice but not in the agent voice, while the children produced mainly agent-initial constructions regardless of voice. This agent-initial preference, despite the lack of a close link between the agent and the subject in Tagalog, shows that this word order preference is not merely syntactically-driven (subject-initial preference). Additionally, the children’s agent-initial preference in the agent voice, contrary to the adults’ lack of preference, shows that children do not respect the subject-last principle of ordering Tagalog full noun phrases. These results suggest that language-specific optional features like a subject-last principle take longer to be acquired.
  • Garcia, R., Roeser, J., & Höhle, B. (2020). Children’s online use of word order and morphosyntactic markers in Tagalog thematic role assignment: An eye-tracking study. Journal of Child Language, 47(3), 533-555. doi:10.1017/S0305000919000618.

    Abstract

    We investigated whether Tagalog-speaking children incrementally interpret the first noun
    as the agent, even if verbal and nominal markers for assigning thematic roles are given
    early in Tagalog sentences. We asked five- and seven-year-old children and adult
    controls to select which of two pictures of reversible actions matched the sentence they
    heard, while their looks to the pictures were tracked. Accuracy and eye-tracking data
    showed that agent-initial sentences were easier to comprehend than patient-initial
    sentences, but the effect of word order was modulated by voice. Moreover, our eyetracking
    data provided evidence that, by the first noun phrase, seven-year-old children
    looked more to the target in the agent-initial compared to the patient-initial conditions,
    but this word order advantage was no longer observed by the second noun phrase. The
    findings support language processing and acquisition models which emphasize the role
    of frequency in developing heuristic strategies (e.g., Chang, Dell, & Bock, 2006).
  • Garcia, R., & Kidd, E. (2020). The acquisition of the Tagalog symmetrical voice system: Evidence from structural priming. Language Learning and Development, 16(4), 399-425. doi:10.1080/15475441.2020.1814780.

    Abstract

    We report on two experiments that investigated the acquisition of the Tagalog symmetrical voice system, a typologically rare feature of Western Austronesian languages in which there are more than one basic transitive construction and no preference for agents to be syntactic subjects. In the experiments, 3-, 5-, and 7-year-old Tagalog-speaking children and adults completed a structural priming task that manipulated voice and word order, with the uniqueness of Tagalog allowing us to tease apart priming of thematic role order from that of syntactic roles. Participants heard a description of a picture showing a transitive action, and were then asked to complete a sentence of an unrelated picture using a voice-marked verb provided by the experimenter. Our results show that children gradually acquire an agent-before-patient preference, instead of having a default mapping of the agent to the first noun position. We also found an earlier mastery of the patient voice verbal and nominal marker configuration (patient is the subject), suggesting that children do not initially map the agent to the subject. Children were primed by thematic role but not syntactic role order, suggesting that they prioritize mapping of the thematic roles to sentence positions.
  • Garcia, M., & Ravignani, A. (2020). Acoustic allometry and vocal learning in mammals. Biology Letters, 16: 20200081. doi:10.1098/rsbl.2020.0081.

    Abstract

    Acoustic allometry is the study of how animal vocalisations reflect their body size. A key aim of this research is to identify outliers to acoustic allometry principles and pinpoint the evolutionary origins of such outliers. A parallel strand of research investigates species capable of vocal learning, the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalisations. Modification of vocalizations is a common feature found when studying both acoustic allometry and vocal learning. Yet, these two fields have only been investigated separately to date. Here, we review and connect acoustic allometry and vocal learning across mammalian clades, combining perspectives from bioacoustics, anatomy and evolutionary biology. Based on this, we hypothesize that, as a precursor to vocal learning, some species might have evolved the capacity for volitional vocal modulation via sexual selection for ‘dishonest’ signalling. We provide preliminary support for our hypothesis by showing significant associations between allometric deviation and vocal learning in a dataset of 164 mammals. Our work offers a testable framework for future empirical research linking allometric principles with the evolution of vocal learning.
  • Garcia, M., Theunissen, F., Sèbe, F., Clavel, J., Ravignani, A., Marin-Cudraz, T., Fuchs, J., & Mathevon, N. (2020). Evolution of communication signals and information during species radiation. Nature Communications, 11: 4970. doi:10.1038/s41467-020-18772-3.

    Abstract

    Communicating species identity is a key component of many animal signals. However, whether selection for species recognition systematically increases signal diversity during clade radiation remains debated. Here we show that in woodpecker drumming, a rhythmic signal used during mating and territorial defense, the amount of species identity information encoded remained stable during woodpeckers’ radiation. Acoustic analyses and evolutionary reconstructions show interchange among six main drumming types despite strong phylogenetic contingencies, suggesting evolutionary tinkering of drumming structure within a constrained acoustic space. Playback experiments and quantification of species discriminability demonstrate sufficient signal differentiation to support species recognition in local communities. Finally, we only find character displacement in the rare cases where sympatric species are also closely related. Overall, our results illustrate how historical contingencies and ecological interactions can promote conservatism in signals during a clade radiation without impairing the effectiveness of information transfer relevant to inter-specific discrimination.
  • Gaskell, M. G., Warker, J., Lindsay, S., Frost, R. L. A., Guest, J., Snowdon, R., & Stackhouse, A. (2014). Sleep Underpins the Plasticity of Language Production. Psychological Science, 25(7), 1457-1465. doi:10.1177/0956797614535937.

    Abstract

    The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep.

    Additional information

    https://osf.io/zqg9y/
  • Geambasu, A., Toron, L., Ravignani, A., & Levelt, C. C. (2020). Rhythmic recursion? Human sensitivity to a Lindenmayer grammar with self-similar structure in a musical task. Music & Science. doi:10.1177%2F2059204320946615.

    Abstract

    Processing of recursion has been proposed as the foundation of human linguistic ability. Yet this ability may be shared with other domains, such as the musical or rhythmic domain. Lindenmayer grammars (L-systems) have been proposed as a recursive grammar for use in artificial grammar experiments to test recursive processing abilities, and previous work had shown that participants are able to learn such a grammar using linguistic stimuli (syllables). In the present work, we used two experimental paradigms (a yes/no task and a two-alternative forced choice) to test whether adult participants are able to learn a recursive Lindenmayer grammar composed of drum sounds. After a brief exposure phase, we found that participants at the group level were sensitive to the exposure grammar and capable of distinguishing the grammatical and ungrammatical test strings above chance level in both tasks. While we found evidence of participants’ sensitivity to a very complex L-system grammar in a non-linguistic, potentially musical domain, the results were not robust. We discuss the discrepancy within our results and with the previous literature using L-systems in the linguistic domain. Furthermore, we propose directions for future music cognition research using L-system grammars.
  • Gerakaki, S. (2020). The moment in between: Planning speech while listening. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gerrits, F., Senft, G., & Wisse, D. (2018). Bomiyoyeva and bomduvadoya: Two rare structures on the Trobriand Islands exclusively reserved for Tabalu chiefs. Anthropos, 113, 93-113. doi:10.5771/0257-9774-2018-1-93.

    Abstract

    This article presents information about two so far undescribed buildings made by the Trobriand Islanders, the bomiyoyeva and the bomduvadova. These structures are connected to the highest-ranking chiefs living in Labai and Omarakana on Kiriwina Island. They highlight the power and eminence of these chiefs. After a brief report on the history of this project, the structure of the two houses, their function, and their use is described and information on their construction and their mythical background is provided. Finally, everyday as well as ritual, social, and political functions of both buildings are discussed. [Melanesia, Trobriand Islands, Tabalu chiefs, yams houses, bomiyoyeva, bomduvadova, authoritative capacities]

    Additional information

    link to journal
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Gialluisi, A., Pippucci, T., & Romeo, G. (2014). Reply to ten Kate et al. European Journal of Human Genetics, 2, 157-158. doi:10.1038/ejhg.2013.153.
  • Gilbers, S., Hoeksema, N., De Bot, K., & Lowie, W. (2020). Regional variation in West and East Coast African-American English prosody and rap flows. Language and Speech, 63(4), 713-745. doi:10.1177/0023830919881479.

    Abstract

    Regional variation in African-American English (AAE) is especially salient to its speakers involved with hip-hop culture, as hip-hop assigns great importance to regional identity and regional accents are a key means of expressing regional identity. However, little is known about AAE regional variation regarding prosodic rhythm and melody. In hip-hop music, regional variation can also be observed, with different regions’ rap performances being characterized by distinct “flows” (i.e., rhythmic and melodic delivery), an observation which has not been quantitatively investigated yet. This study concerns regional variation in AAE speech and rap, specifically regarding the United States’ East and West Coasts. It investigates how East Coast and West Coast AAE prosody are distinct, how East Coast and West Coast rap flows differ, and whether the two domains follow a similar pattern: more rhythmic and melodic variation on the West Coast compared to the East Coast for both speech and rap. To this end, free speech and rap recordings of 16 prominent African-American members of the East Coast and West Coast hip-hop communities were phonetically analyzed regarding rhythm (e.g., syllable isochrony and musical timing) and melody (i.e., pitch fluctuation) using a combination of existing and novel methodological approaches. The results mostly confirm the hypotheses that East Coast AAE speech and rap are less rhythmically diverse and more monotone than West Coast AAE speech and rap, respectively. They also show that regional variation in AAE prosody and rap flows pattern in similar ways, suggesting a connection between rhythm and melody in language and music.
  • Gisladottir, R. S., Bögels, S., & Levinson, S. C. (2018). Oscillatory brain responses reflect anticipation during comprehension of speech acts in spoken dialogue. Frontiers in Human Neuroscience, 12: 34. doi:10.3389/fnhum.2018.00034.

    Abstract

    Everyday conversation requires listeners to quickly recognize verbal actions, so-called speech acts, from the underspecified linguistic code and prepare a relevant response within the tight time constraints of turn-taking. The goal of this study was to determine the time-course of speech act recognition by investigating oscillatory EEG activity during comprehension of spoken dialogue. Participants listened to short, spoken dialogues with target utterances that delivered three distinct speech acts (Answers, Declinations, Pre-offers). The targets were identical across conditions at lexico-syntactic and phonetic/prosodic levels but differed in the pragmatic interpretation of the speech act performed. Speech act comprehension was associated with reduced power in the alpha/beta bands just prior to Declination speech acts, relative to Answers and Pre-offers. In addition, we observed reduced power in the theta band during the beginning of Declinations, relative to Answers. Based on the role of alpha and beta desynchronization in anticipatory processes, the results are taken to indicate that anticipation plays a role in speech act recognition. Anticipation of speech acts could be critical for efficient turn-taking, allowing interactants to quickly recognize speech acts and respond within the tight time frame characteristic of conversation. The results show that anticipatory processes can be triggered by the characteristics of the interaction, including the speech act type.

    Additional information

    data sheet 1.pdf
  • Goldsborough, Z., Van Leeuwen, E. J. C., Kolff, K. W. T., De Waal, F. B. M., & Webb, C. E. (2020). Do chimpanzees (Pan troglodytes) console a bereaved mother? Primates, 61: 20190695, pp. 93-102. doi:10.1007/s10329-019-00752-x.

    Abstract

    Comparative thanatology encompasses the study of death-related responses in non-human animals and aspires to elucidate the evolutionary origins of human behavior in the context of death. Many reports have revealed that humans are not the only species affected by the death of group members. Non-human primates in particular show behaviors such as congregating around the deceased, carrying the corpse for prolonged periods of time (predominantly mothers carrying dead infants), and inspecting the corpse for signs of life. Here, we extend the focus on death-related responses in non-human animals by exploring whether chimpanzees are inclined to console the bereaved: the individual(s) most closely associated with the deceased. We report a case in which a chimpanzee (Pan troglodytes) mother experienced the loss of her fully developed infant (presumed stillborn). Using observational data to compare the group members’ behavior before and after the death, we found that a substantial number of group members selectively increased their affiliative expressions toward the bereaved mother. Moreover, on the day of the death, we observed heightened expressions of species-typical reassurance behaviors toward the bereaved mother. After ruling out several alternative explanations, we propose that many of the chimpanzees consoled the bereaved mother by means of affiliative and selective empathetic expressions.
  • González Alonso, J., Alemán Bañón, J., DeLuca, V., Miller, D., Pereira Soares, S. M., Puig-Mayenco, E., Slaats, S., & Rothman, J. (2020). Event related potentials at initial exposure in third language acquisition: Implications from an artificial mini-grammar study. Journal of Neurolinguistics, 56: 100939. doi:10.1016/j.jneuroling.2020.100939.

    Abstract

    The present article examines the proposal that typology is a major factor guiding transfer selectivity in L3/Ln acquisition. We tested first exposure in L3/Ln using two artificial languages (ALs) lexically based in English and Spanish, focusing on gender agreement between determiners and nouns, and between nouns and adjectives. 50 L1 Spanish-L2 English speakers took part in the experiment. After receiving implicit training in one of the ALs (Mini-Spanish, N = 26; Mini-English, N = 24), gender violations elicited a fronto-lateral negativity in Mini-English in the earliest time window (200–500 ms), although this was not followed by any other differences in subsequent periods. This effect was highly localized, surfacing only in electrodes of the right-anterior region. In contrast, gender violations in Mini-Spanish elicited a broadly distributed positivity in the 300–600 ms time window. While we do not find typical indices of grammatical processing such as the P600 component, we believe that the between-groups differential appearance of the positivity for gender violations in the 300–600 ms time window reflects differential allocation of attentional resources as a function of the ALs’ lexical similarity to English or Spanish. We take these differences in attention to be precursors of the processes involved in transfer source selection in L3/Ln.
  • Gonzalez Gomez, N., Hayashi, A., Tsuji, S., Mazuka, R., & Nazzi, T. (2014). The role of the input on the development of the LC bias: A crosslinguistic comparison. Cognition, 132(3), 301-311. doi:10.1016/j.cognition.2014.04.004.

    Abstract

    Previous studies have described the existence of a phonotactic bias called the Labial–Coronal (LC) bias, corresponding to a tendency to produce more words beginning with a labial consonant followed by a coronal consonant (i.e. “bat”) than the opposite CL pattern (i.e. “tap”). This bias has initially been interpreted in terms of articulatory constraints of the human speech production system. However, more recently, it has been suggested that this presumably language-general LC bias in production might be accompanied by LC and CL biases in perception, acquired in infancy on the basis of the properties of the linguistic input. The present study investigates the origins of these perceptual biases, testing infants learning Japanese, a language that has been claimed to possess more CL than LC sequences, and comparing them with infants learning French, a language showing a clear LC bias in its lexicon. First, a corpus analysis of Japanese IDS and ADS revealed the existence of an overall LC bias, except for plosive sequences in ADS, which show a CL bias across counts. Second, speech preference experiments showed a perceptual preference for CL over LC plosive sequences (all recorded by a Japanese speaker) in 13- but not in 7- and 10-month-old Japanese-learning infants (Experiment 1), while revealing the emergence of an LC preference between 7 and 10 months in French-learning infants, using the exact same stimuli. These crosslinguistic behavioral differences, obtained with the same stimuli, thus reflect differences in processing in two populations of infants, which can be linked to differences in the properties of the lexicons of their respective native languages. These findings establish that the emergence of a CL/LC bias is related to exposure to a linguistic input.
  • Goodhew, S. C., & Kidd, E. (2020). Bliss is blue and bleak is grey: Abstract word-colour associations influence objective performance even when not task relevant. Acta Psychologica, 206: 103067. doi:10.1016/j.actpsy.2020.103067.

    Abstract

    Humans associate abstract words with physical stimulus dimensions, such as linking upward locations with positive concepts (e.g., happy = up). These associations manifest both via subjective reports of associations and on objective performance metrics. Humans also report subjective associations between colours and abstract words (e.g., joy is linked to yellow). Here we tested whether such associations manifest on objective task performance, even when not task-relevant. Across three experiments, participants were presented with abstract words in physical colours that were either congruent with previously-reported subjective word-colour associations (e.g., victory in red and unhappy in blue), or were incongruent (e.g., victory in blue and unhappy in red). In Experiment 1, participants' task was to identify the valence of words. This congruency manipulation systematically affected objective task performance. In Experiment 2, participants completed two blocks, a valence-identification and a colour-identification task block. Both tasks produced congruency effects on performance, however, the results of the colour identification block could have reflected learning effects (i.e., associating the more common congruent colour with the word). This issue was rectified in Experiment 3, whereby participants completed the same two tasks as Experiment 2, but now matched congruent and incongruent pairs were used for both tasks. Again, both tasks produced reliable congruency effects. Item analyses in each experiment revealed that these effects demonstrated a degree of item specificity. Overall, there was clear evidence that at least some abstract word-colour pairings can systematically affect behaviour.
  • Goodhew, S. C., McGaw, B., & Kidd, E. (2014). Why is the sunny side always up? Explaining the spatial mapping of concepts by language use. Psychonomic Bulletin & Review, 21(5), 1287-1293. doi:10.3758/s13423-014-0593-6.

    Abstract

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people’s attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.
  • Gordon, J. K., & Clough, S. (2020). How fluent? Part B. Underlying contributors to continuous measures of fluency in aphasia. Aphasiology, 34(5), 643-663. doi:10.1080/02687038.2020.1712586.

    Abstract

    Background: While persons with aphasia (PwA) are often dichotomised as fluent or nonfluent, agreement that fluency is not an all-or-nothing construct has led to the use of continuous variables as a way to quantify fluency, such as multi-dimensional rating scales, speech rate, and utterance length. Though these measures are often used in research, they provide little information about the underlying fluency deficit.
    Aim: The aim of the study was to identify how well commonly used continuous measures of fluency capture variability in spontaneous speech variables at lexical, grammatical, and speech production levels. Methods & Procedures: Speech samples of 254 English-speaking PwA from the AphasiaBank database were analyzed to examine the distributions of four continuous measures of fluency: the WAB-R fluency scale, utterance length, retracing, and speech rate. Linear regression was used to identify spontaneous speech predictors contributing to each fluency outcome measure.
    Outcomes & Results: All the outcome measures reflected the influence of multiple underlying dimensions, although the predictors varied. The WAB-R fluency scale, speech rate, and retracing were influenced by measures of grammatical competence, lexical retrieval, and speech production, whereas utterance length was influenced only by measures of grammatical competence and lexical retrieval. The strongest predictor of WAB-R fluency was aphasia severity, whereas the strongest predictor for all other fluency proxy measures was grammatical complexity.
    Conclusions: Continuous measures allow a variety of ways to objectively quantify speech fluency; however, they reflect superficial manifestations of fluency that may be affected by multiple underlying deficits. Furthermore, the deficits underlying different measures vary, which may reduce the reliability of fluency diagnoses. Capturing these differences at the individual level is critical to accurate diagnosis and appropriately targeted therapy.
  • Goregliad Fjaellingsdal, T., Schwenke, D., Scherbaum, S., Kuhlen, A. K., Bögels, S., Meekes, J., & Bleichner, M. G. (2020). Expectancy effects in the EEG during joint and spontaneous word-by-word sentence production in German. Scientific Reports, 10: 5460. doi:10.1038/s41598-020-62155-z.

    Abstract

    Our aim in the present study is to measure neural correlates during spontaneous interactive sentence production. We present a novel approach using the word-by-word technique from improvisational theatre, in which two speakers jointly produce one sentence. This paradigm allows the assessment of behavioural aspects, such as turn-times, and electrophysiological responses, such as event-related-potentials (ERPs). Twenty-five participants constructed a cued but spontaneous four-word German sentence together with a confederate, taking turns for each word of the sentence. In 30% of the trials, the confederate uttered an unexpected gender-marked article. To complete the sentence in a meaningful way, the participant had to detect the violation and retrieve and utter a new fitting response. We found significant increases in response times after unexpected words and – despite allowing unscripted language production and naturally varying speech material – successfully detected significant N400 and P600 ERP effects for the unexpected word. The N400 EEG activity further significantly predicted the response time of the subsequent turn. Our results show that combining behavioural and neuroscientific measures of verbal interactions while retaining sufficient experimental control is possible, and that this combination provides promising insights into the mechanisms of spontaneous spoken dialogue.
  • Gori, M., Vercillo, T., Sandini, G., & Burr, D. (2014). Tactile feedback improves auditory spatial localization. Frontiers in Psychology, 5: 1121. doi:10.3389/fpsyg.2014.01121.

    Abstract

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gon etal., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial.The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.
  • Goriot, C., McQueen, J. M., Unsworth, S., & Van Hout, R. (2020). Perception of English phonetic contrasts by Dutch children: How bilingual are early-English learners? PLoS One, 15(3): e0229902. doi:10.1371/journal.pone.0229902.

    Abstract

    The aim of this study was to investigate whether early-English education benefits the perception
    of English phonetic contrasts that are known to be perceptually confusable for Dutch
    native speakers, comparing Dutch pupils who were enrolled in an early-English programme
    at school from the age of four with pupils in a mainstream programme with English instruction
    from the age of 11, and English-Dutch early bilingual children. Children were 4-5-yearolds
    (start of primary school), 8-9-year-olds, or 11-12-year-olds (end of primary school).
    Children were tested on four contrasts that varied in difficulty: /b/-/s/ (easy), /k/-/ɡ/ (intermediate),
    /f/-/θ/ (difficult), /ε/-/æ/ (very difficult). Bilingual children outperformed the two other
    groups on all contrasts except /b/-/s/. Early-English pupils did not outperform mainstream
    pupils on any of the contrasts. This shows that early-English education as it is currently
    implemented is not beneficial for pupils’ perception of non-native contrasts.

    Additional information

    Supporting information
  • Goriot, C., Broersma, M., McQueen, J. M., Unsworth, S., & Van Hout, R. (2018). Language balance and switching ability in children acquiring English as a second language. Journal of Experimental Child Psychology, 173, 168-186. doi:10.1016/j.jecp.2018.03.019.

    Abstract

    This study investigated whether relative lexical proficiency in Dutch and English in child second language (L2) learners is related to executive functioning. Participants were Dutch primary school pupils of three different age groups (4–5, 8–9, and 11–12 years) who either were enrolled in an early-English schooling program or were age-matched controls not on that early-English program. Participants performed tasks that measured switching, inhibition, and working memory. Early-English program pupils had greater knowledge of English vocabulary and more balanced Dutch–English lexicons. In both groups, lexical balance, a ratio measure obtained by dividing vocabulary scores in English by those in Dutch, was related to switching but not to inhibition or working memory performance. These results show that for children who are learning an L2 in an instructional setting, and for whom managing two languages is not yet an automatized process, language balance may be more important than L2 proficiency in influencing the relation between childhood bilingualism and switching abilities.
  • De Graaf, T. A., Thomson, A., Janssens, S. E. W., Van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. European Journal of Neuroscience, 51(11), 2299-2313. doi:10.1111/ejn.14677.

    Abstract

    In recent years, the influence of alpha (7–13 Hz) phase on visual processing has received a lot of attention. Magneto‐/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre‐determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS‐phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG‐based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo‐)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom‐built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one‐cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.

    Additional information

    Supporting Information
  • Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K. and 341 moreGrasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K., Andersson, M., Ard, T., Armstrong, N. J., Ashley-Koch, A., Atkins, J. R., Bernard, M., Brouwer, R. M., Buimer, E. E. L., Bülow, R., Bürger, C., Cannon, D. M., Chakravarty, M., Chen, Q., Cheung, J. W., Couvy-Duchesne, B., Dale, A. M., Dalvie, S., De Araujo, T. K., De Zubicaray, G. I., De Zwarte, S. M. C., Den Braber, A., Doan, N. T., Dohm, K., Ehrlich, S., Engelbrecht, H.-R., Erk, S., Fan, C. C., Fedko, I. O., Foley, S. F., Ford, J. M., Fukunaga, M., Garrett, M. E., Ge, T., Giddaluru, S., Goldman, A. L., Green, M. J., Groenewold, N. A., Grotegerd, D., Gurholt, T. P., Gutman, B. A., Hansell, N. K., Harris, M. A., Harrison, M. B., Haswell, C. C., Hauser, M., Herms, S., Heslenfeld, D. J., Ho, N. F., Hoehn, D., Hoffmann, P., Holleran, L., Hoogman, M., Hottenga, J.-J., Ikeda, M., Janowitz, D., Jansen, I. E., Jia, T., Jockwitz, C., Kanai, R., Karama, S., Kasperaviciute, D., Kaufmann, T., Kelly, S., Kikuchi, M., Klein, M., Knapp, M., Knodt, A. R., Krämer, B., Lam, M., Lancaster, T. M., Lee, P. H., Lett, T. A., Lewis, L. B., Lopes-Cendes, I., Luciano, M., Macciardi, F., Marquand, A. F., Mathias, S. R., Melzer, T. R., Milaneschi, Y., Mirza-Schreiber, N., Moreira, J. C. V., Mühleisen, T. W., Müller-Myhsok, B., Najt, P., Nakahara, S., Nho, K., Olde Loohuis, L. M., Orfanos, D. P., Pearson, J. F., Pitcher, T. L., Pütz, B., Quidé, Y., Ragothaman, A., Rashid, F. M., Reay, W. R., Redlich, R., Reinbold, C. S., Repple, J., Richard, G., Riedel, B. C., Risacher, S. L., Rocha, C. S., Mota, N. R., Salminen, L., Saremi, A., Saykin, A. J., Schlag, F., Schmaal, L., Schofield, P. R., Secolin, R., Shapland, C. Y., Shen, L., Shin, J., Shumskaya, E., Sønderby, I. E., Sprooten, E., Tansey, K. E., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Turner, J. A., Uhlmann, A., Vallerga, C. L., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, L., Van Erp, T. G. M., Van Haren, N. E. M., Van Rooij, D., Van Tol, M.-J., Veldink, J. H., Verhoef, E., Walton, E., Wang, M., Wang, Y., Wardlaw, J. M., Wen, W., Westlye, L. T., Whelan, C. D., Witt, S. H., Wittfeld, K., Wolf, C., Wolfers, T., Wu, J. Q., Yasuda, C. L., Zaremba, D., Zhang, Z., Zwiers, M. P., Artiges, E., Assareh, A. A., Ayesa-Arriola, R., Belger, A., Brandt, C. L., Brown, G. G., Cichon, S., Curran, J. E., Davies, G. E., Degenhardt, F., Dennis, M. F., Dietsche, B., Djurovic, S., Doherty, C. P., Espiritu, R., Garijo, D., Gil, Y., Gowland, P. A., Green, R. C., Häusler, A. N., Heindel, W., Ho, B.-C., Hoffmann, W. U., Holsboer, F., Homuth, G., Hosten, N., Jack Jr., C. R., Jang, M., Jansen, A., Kimbrel, N. A., Kolskår, K., Koops, S., Krug, A., Lim, K. O., Luykx, J. J., Mathalon, D. H., Mather, K. A., Mattay, V. S., Matthews, S., Mayoral Van Son, J., McEwen, S. C., Melle, I., Morris, D. W., Mueller, B. A., Nauck, M., Nordvik, J. E., Nöthen, M. M., O’Leary, D. S., Opel, N., Paillère Martinot, M.-L., Pike, G. B., Preda, A., Quinlan, E. B., Rasser, P. E., Ratnakar, V., Reppermund, S., Steen, V. M., Tooney, P. A., Torres, F. R., Veltman, D. J., Voyvodic, J. T., Whelan, R., White, T., Yamamori, H., Adams, H. H. H., Bis, J. C., Debette, S., Decarli, C., Fornage, M., Gudnason, V., Hofer, E., Ikram, M. A., Launer, L., Longstreth, W. T., Lopez, O. L., Mazoyer, B., Mosley, T. H., Roshchupkin, G. V., Satizabal, C. L., Schmidt, R., Seshadri, S., Yang, Q., Alzheimer’s Disease Neuroimaging Initiative, CHARGE Consortium, EPIGEN Consortium, IMAGEN Consortium, SYS Consortium, Parkinson’s Progression Markers Initiative, Alvim, M. K. M., Ames, D., Anderson, T. J., Andreassen, O. A., Arias-Vasquez, A., Bastin, M. E., Baune, B. T., Beckham, J. C., Blangero, J., Boomsma, D. I., Brodaty, H., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bustillo, J. R., Cahn, W., Cairns, M. J., Calhoun, V., Carr, V. J., Caseras, X., Caspers, S., Cavalleri, G. L., Cendes, F., Corvin, A., Crespo-Facorro, B., Dalrymple-Alford, J. C., Dannlowski, U., De Geus, E. J. C., Deary, I. J., Delanty, N., Depondt, C., Desrivières, S., Donohoe, G., Espeseth, T., Fernández, G., Fisher, S. E., Flor, H., Forstner, A. J., Francks, C., Franke, B., Glahn, D. C., Gollub, R. L., Grabe, H. J., Gruber, O., Håberg, A. K., Hariri, A. R., Hartman, C. A., Hashimoto, R., Heinz, A., Henskens, F. A., Hillegers, M. H. J., Hoekstra, P. J., Holmes, A. J., Hong, L. E., Hopkins, W. D., Hulshoff Pol, H. E., Jernigan, T. L., Jönsson, E. G., Kahn, R. S., Kennedy, M. A., Kircher, T. T. J., Kochunov, P., Kwok, J. B. J., Le Hellard, S., Loughland, C. M., Martin, N. G., Martinot, J.-L., McDonald, C., McMahon, K. L., Meyer-Lindenberg, A., Michie, P. T., Morey, R. A., Mowry, B., Nyberg, L., Oosterlaan, J., Ophoff, R. A., Pantelis, C., Paus, T., Pausova, Z., Penninx, B. W. J. H., Polderman, T. J. C., Posthuma, D., Rietschel, M., Roffman, J. L., Rowland, L. M., Sachdev, P. S., Sämann, P. G., Schall, U., Schumann, G., Scott, R. J., Sim, K., Sisodiya, S. M., Smoller, J. W., Sommer, I. E., St Pourcain, B., Stein, D. J., Toga, A. W., Trollor, J. N., Van der Wee, N. J. A., van 't Ent, D., Völzke, H., Walter, H., Weber, B., Weinberger, D. R., Wright, M. J., Zhou, J., Stein, J. L., Thompson, P. M., & Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484): eaay6690. doi:10.1126/science.aay6690.

    Abstract

    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Groen, I. I. A., Jahfari, S., Seijdel, N., Ghebreab, S., Lamme, V. A. F., & Scholte, H. S. (2018). Scene complexity modulates degree of feedback activity during object detection in natural scenes. PLoS Computational Biology, 14: e1006690. doi:10.1371/journal.pcbi.1006690.

    Abstract

    Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

    Additional information

    data via OSF
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Guerra, E., & Knoeferle, P. (2014). Spatial distance effects on incremental semantic interpretation of abstract sentences: Evidence from eye tracking. Cognition, 133(3), 535-552. doi:10.1016/j.cognition.2014.07.007.

    Abstract

    A large body of evidence has shown that visual context information can rapidly modulate language comprehension for concrete sentences and when it is mediated by a referential or a lexical-semantic link. What has not yet been examined is whether visual context can also modulate comprehension of abstract sentences incrementally when it is neither referenced by, nor lexically associated with, the sentence. Three eye-tracking reading experiments examined the effects of spatial distance between words (Experiment 1) and objects (Experiment 2 and 3) on participants’ reading times for sentences that convey similarity or difference between two abstract nouns (e.g., ‘Peace and war are certainly different...’). Before reading the sentence, participants inspected a visual context with two playing cards that moved either far apart or close together. In Experiment 1, the cards turned and showed the first two nouns of the sentence (e.g., ‘peace’, ‘war’). In Experiments 2 and 3, they turned but remained blank. Participants’ reading times at the adjective (Experiment 1: first-pass reading time; Experiment 2: total times) and at the second noun phrase (Experiment 3: first-pass times) were faster for sentences that expressed similarity when the preceding words/objects were close together (vs. far apart) and for sentences that expressed dissimilarity when the preceding words/objects were far apart (vs. close together). Thus, spatial distance between words or entirely unrelated objects can rapidly and incrementally modulate the semantic interpretation of abstract sentences.

    Additional information

    mmc1.doc
  • Guest, O., Caso, A., & Cooper, R. P. (2020). On simulating neural damage in connectionist networks. Computational Brain & Behavior, 3, 289-321. doi:10.1007/s42113-020-00081-z.

    Abstract

    A key strength of connectionist modelling is its ability to simulate both intact cognition and the behavioural effects of neural damage. We survey the literature, showing that models have been damaged in a variety of ways, e.g. by removing connections, by adding noise to connection weights, by scaling weights, by removing units and by adding noise to unit activations. While these different implementations of damage have often been assumed to be behaviourally equivalent, some theorists have made aetiological claims that rest on nonequivalence. They suggest that related deficits with different aetiologies might be accounted for by different forms of damage within a single model. We present two case studies that explore the effects of different forms of damage in two influential connectionist models, each of which has been applied to explain neuropsychological deficits. Our results indicate that the effect of simulated damage can indeed be sensitive to the way in which damage is implemented, particularly when the environment comprises subsets of items that differ in their statistical properties, but such effects are sensitive to relatively subtle aspects of the model’s training environment. We argue that, as a consequence, substantial methodological care is required if aetiological claims about simulated neural damage are to be justified, and conclude more generally that implementation assumptions, including those concerning simulated damage, must be fully explored when evaluating models of neurological deficits, both to avoid over-extending the explanatory power of specific implementations and to ensure that reported results are replicable.
  • Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
  • Haan, E. H. F., Seijdel, N., Kentridge, R. W., & Heywood, C. A. (2020). Plasticity versus chronicity: Stable performance on category fluency 40 years post‐onset. Journal of Neuropsychology, 14(1), 20-27. doi:10.1111/jnp.12180.

    Abstract

    What is the long‐term trajectory of semantic memory deficits in patients who have suffered structural brain damage? Memory is, per definition, a changing faculty. The traditional view is that after an initial recovery period, the mature human brain has little capacity to repair or reorganize. More recently, it has been suggested that the central nervous system may be more plastic with the ability to change in neural structure, connectivity, and function. The latter observations are, however, largely based on normal learning in healthy subjects. Here, we report a patient who suffered bilateral ventro‐medial damage after presumed herpes encephalitis in 1971. He was seen regularly in the eighties, and we recently had the opportunity to re‐assess his semantic memory deficits. On semantic category fluency, he showed a very clear category‐specific deficit performing better that control data on non‐living categories and significantly worse on living items. Recent testing showed that his impairments have remained unchanged for more than 40 years. We suggest cautiousness when extrapolating the concept of brain plasticity, as observed during normal learning, to plasticity in the context of structural brain damage.
  • Hagoort, P. (1997). De rappe prater als gewoontedier [Review of the book Smooth talkers: The linguistic performance of auctioneers and sportscasters, by Koenraad Kuiper]. Psychologie, 16, 22-23.

Share this page