Publications

Displaying 201 - 269 of 269
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Reesink, G. (2002). The Eastern bird's head languages. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 1-44). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). A grammar sketch of Sougb. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 181-275). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). Mansim, a lost language of the Bird's Head. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 277-340). Canberra: Pacific Linguistics.
  • Reesink, G. (2014). Topic management and clause combination in the Papuan language Usan. In R. Van Gijn, J. Hammond, D. Matic, S. van Putten, & A.-V. Galucio (Eds.), Information Structure and Reference Tracking in Complex Sentences. (pp. 231-262). Amsterdam: John Benjamins.

    Abstract

    This chapter describes topic management in the Papuan language Usan. The notion of ‘topic’ is defined by its pre-theoretical meaning ‘what someone’s speech is about’. This notion cannot be restricted to simple clausal or sentential constructions, but requires the wider context of long stretches of natural text. The tracking of a topic is examined in its relationship to clause combining mechanisms. Coordinating clause chaining with its switch reference mechanism is contrasted with subordinating strategies called ‘domain-creating’ constructions. These different strategies are identified by language-specific signals, such as intonation and morphosyntactic cues like nominalizations and scope of negation and other modalities.
  • Roberts, S. G. (2014). Monolingual Biases in Simulations of Cultural Transmission. In V. Dignum, & F. Dignum (Eds.), Perspectives on Culture and Agent-based Simulations (pp. 111-125). Cham: Springer. doi:10.1007/978-3-319-01952-9_7.

    Abstract

    Recent research suggests that the evolution of language is affected by the inductive biases of its learners. I suggest that there is an implicit assumption that one of these biases is to expect a single linguistic system in the input. Given the prevalence of bilingual cultures, this may not be a valid abstraction. This is illustrated by demonstrating that the ‘minimal naming game’ model, in which a shared lexicon evolves in a population of agents, includes an implicit mutual exclusivity bias. Since recent research suggests that children raised in bilingual cultures do not exhibit mutual exclusivity, the individual learning algorithm of the agents is not as abstract as it appears to be. A modification of this model demonstrates that communicative success can be achieved without mutual exclusivity. It is concluded that complex cultural phenomena, such as bilingualism, do not necessarily result from complex individual learning mechanisms. Rather, the cultural process itself can bring about this complexity.
  • Roberts, S. G., & Quillinan, J. (2014). The Chimp Challenge: Working memory in chimps and humans. In L. McCrohon, B. Thompson, T. Verhoef, & H. Yamauchi (Eds.), The Past, Present and Future of Language Evolution Research: Student volume of the 9th International Conference on the Evolution of Language (pp. 31-39). Tokyo: EvoLang9 Organising Committee.

    Abstract

    Matsuzawa (2012) presented work at Evolang demonstrating the working memory abilities of chimpanzees. (Inoue & Matsuzawa, 2007) found that chimpanzees can correctly remember the location of 9 randomly arranged numerals displayed for 210ms - shorter than an average human eye saccade. Humans, however, perform poorly at this task. Matsuzawa suggests a semantic link hypothesis: while chimps have good visual, eidetic memory, humans are good at symbolic associations. The extra information in the semantic, linguistic links that humans possess increase the load on working memory and make this task difficult for them. We were interested to see if a wider search could find humans that matched the performance of the chimpanzees. We created an online version of the experiment and challenged people to play. We also attempted to run a non-semantic version of the task to see if this made the task easier. We found that, while humans can perform better than Inoue and Matsuzawa (2007) suggest, chimpanzees can perform better still. We also found no evidence to support the semantic link hypothesis.
  • Roelofs, A. (2002). Storage and computation in spoken word production. In S. Nooteboom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. 183-216). Dordrecht: Kluwer.
  • Roelofs, A. (2002). Modeling of lexical access in speech production: A psycholinguistic perspective on the lexicon. In L. Behrens, & D. Zaefferer (Eds.), The lexicon in focus: Competition and convergence in current lexicology (pp. 75-92). Frankfurt am Main: Lang.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rossi, G. (2014). When do people not use language to make requests? In P. Drew, & E. Couper-Kuhlen (Eds.), Requesting in social interaction (pp. 301-332). Amsterdam: John Benjamins.

    Abstract

    In everyday joint activities (e.g. playing cards, preparing potatoes, collecting empty plates), participants often request others to pass, move or otherwise deploy objects. In order to get these objects to or from the requestee, requesters need to manipulate them, for example by holding them out, reaching for them, or placing them somewhere. As they perform these manual actions, requesters may or may not accompany them with language (e.g. Take this potato and cut it or Pass me your plate). This study shows that adding or omitting language in the design of a request is influenced in the first place by a criterion of recognition. When the requested action is projectable from the advancement of an activity, presenting a relevant object to the requestee is enough for them to understand what to do; when, on the other hand, the requested action is occasioned by a contingent development of the activity, requesters use language to specify what the requestee should do. This criterion operates alongside a perceptual criterion, to do with the affordances of the visual and auditory modality. When the requested action is projectable but the requestee is not visually attending to the requester’s manual behaviour, the requester can use just enough language to attract the requestee’s attention and secure immediate recipiency. This study contributes to a line of research concerned with the organisation of verbal and nonverbal resources for requesting. Focussing on situations in which language is not – or only minimally – used, it demonstrates the role played by visible bodily behaviour and by the structure of everyday activities in the formation and understanding of requests.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rowland, C. F., Noble, C. H., & Chan, A. (2014). Competition all the way down: How children learn word order cues to sentence meaning. In B. MacWhinney, A. Malchukov, & E. Moravcsik (Eds.), Competing Motivations in Grammar and Usage (pp. 125-143). Oxford: Oxford University Press.

    Abstract

    Most work on competing cues in language acquisition has focussed on what happens when cues compete within a certain construction. There has been far less work on what happens when constructions themselves compete. The aim of the present chapter was to explore how the acquisition mechanism copes when constructions compete in a language. We present three experimental studies, all of which focus on the acquisition of the syntactic function of word order as a marker of the Theme-Recipient relation in ditransitives (form-meaning mapping). In Study 1 we investigated how quickly English children acquire form-meaning mappings when there are two competing structures in the language. We demonstrated that English speaking 4-year- olds, but not 3-year-olds, correctly interpreted both preposition al and double object datives, assigning Theme and Recipient participant roles on the basis of word order cues. There was no advantage for the double object dative despite its greater frequency in child directed speech. In Study 2 we looked at acquisition in a language which has no dative alternation –Welsh–to investigate how quickly children acquire form-meaning mapping when there is no competing structure. We demonstrated that Welsh children (Study 2) acquired the prepositional dative at age 3 years, which was much earlier than English children. Finally, in Study 3 we examined bei2 (give) ditransitives in Cantonese, to investigate what happens when there is no dative alternation (as in Welsh), but when the child hears alternative, and possibly competing, word orders in the input. Like the English 3-year-olds, the Cantonese 3-year-olds had not yet acquired the word order marking constraints of bei2 ditransitives. We conclude that there is not only competition between cues but competition between constructions in language acquisition. We suggest an extension to the competition model (Bates & MacWhinney, 1982) whereby generalisations take place across constructions as easily as they take place within constructions, whenever there are salient similarities to form the basis of the generalisation.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • Saito, H., & Kita, S. (2002). "Jesuchaa, kooi, imi" no hennshuu ni atat te [On the occasion of editing "Jesuchaa, Kooi, imi"]. In H. Saito, & S. Kita (Eds.), Kooi, jesuchaa, imi [Action, gesture, meaning] (pp. v-xi). Tokyo: Kyooritsu Shuppan.
  • Schiller, N. O., Costa, A., & Colomé, A. (2002). Phonological encoding of single words: In search of the lost syllable. In C. Gussenhoven, & N. Warner (Eds.), Laboratory Phonology VII (pp. 35-59). Berlin: Mouton de Gruyter.
  • Schiller, N. O. (2002). From phonetics to cognitive psychology: Psycholinguistics has it all. In A. Braun, & H. Masthoff (Eds.), Phonetics and its Applications. Festschrift for Jens-Peter Köster on the Occasion of his 60th Birthday. [Beihefte zur Zeitschrift für Dialektologie und Linguistik; 121] (pp. 13-24). Stuttgart: Franz Steiner Verlag.
  • Schoffelen, J.-M., & Gross, J. (2014). Studying dynamic neural interactions with MEG. In S. Supek, & C. J. Aine (Eds.), Magnetoencephalography: From signals to dynamic cortical networks (pp. 405-427). Berlin: Springer.
  • Schriefers, H., Meyer, A. S., & Levelt, W. J. M. (2002). Exploring the time course of lexical access in language production: Picture word interference studies. In G. Altmann (Ed.), Psycholinguistics: Critical Concepts in Psychology [vol. 5] (pp. 168-191). London: Routledge.
  • Seifart, F. (2002). Shape-distinctions picture-object matching task, with 2002 supplement. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 15-17). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Senft, G. (2002). Feldforschung in einer deutschen Fabrik - oder: Trobriand ist überall. In H. Fischer (Ed.), Feldforschungen. Erfahrungsberichte zur Einführung (Neufassung) (pp. 207-226). Berlin: Reimer.
  • Senft, G. (2002). Linguistische Feldforschung. In H. M. Müller (Ed.), Arbeitsbuch Linguistik (pp. 353-363). Paderborn: Schöningh UTB.
  • Senft, G., & Heeschen, V. (1989). Humanethologisches Tonarchiv. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1989 (pp. 246). Göttingen: Vandenhoeck and Ruprecht.
  • Senft, G. (1997). Magic, missionaries, and religion - Some observations from the Trobriand Islands. In T. Otto, & A. Borsboom (Eds.), Cultural dynamics of religious change in Oceania (pp. 45-58). Leiden: KITLV press.
  • Senft, G. (1997). Introduction. In G. Senft (Ed.), Referring to space - Studies in Austronesian and Papuan languages (pp. 1-38). Oxford: Clarendon Press.
  • Senft, G. (2019). Rituelle Kommunikation. In F. Liedtke, & A. Tuchen (Eds.), Handbuch Pragmatik (pp. 423-430). Stuttgart: J. B. Metzler. doi:10.1007/978-3-476-04624-6_41.

    Abstract

    Die Sprachwissenschaft hat den Begriff und das Konzept ›Rituelle Kommunikation‹ von der vergleichenden Verhaltensforschung übernommen. Humanethologen unterscheiden eine Reihe von sogenannten ›Ausdrucksbewegungen‹, die in der Mimik, der Gestik, der Personaldistanz (Proxemik) und der Körperhaltung (Kinesik) zum Ausdruck kommen. Viele dieser Ausdrucksbewegungen haben sich zu spezifischen Signalen entwickelt. Ethologen definieren Ritualisierung als Veränderung von Verhaltensweisen im Dienst der Signalbildung. Die zu Signalen ritualisierten Verhaltensweisen sind Rituale. Im Prinzip kann jede Verhaltensweise zu einem Signal werden, entweder im Laufe der Evolution oder durch Konventionen, die in einer bestimmten Gemeinschaft gültig sind, die solche Signale kulturell entwickelt hat und die von ihren Mitgliedern tradiert und gelernt werden.
  • Seuren, P. A. M. (2002). Pseudoarguments and pseudocomplements. In B. Nevin (Ed.), The legacy of Zellig Harris: Language and information into the 21st Century: 1 Philosophy of Science, Syntax, and Semantics (pp. 179-206). Amsterdam: John Benjamins.
  • Seuren, P. A. M. (1983). Auxiliary system in Sranan. In F. Heny, & B. Richards (Eds.), Linguistic categories: Auxiliaries and related puzzles / Vol. two, The scope, order, and distribution of English auxiliary verbs (pp. 219-251). Dordrecht: Reidel.
  • Seuren, P. A. M. (1989). A problem in English subject complementation. In D. Jaspers, W. Klooster, Y. Putseys, & P. A. M. Seuren (Eds.), Sentential complementation and the lexicon: Studies in honour of Wim de Geest (pp. 355-375). Dordrecht: Foris.
  • Seuren, P. A. M. (2002). Clitic clusters in French and Italian. In H. Jacobs, & L. Wetzels (Eds.), Liber Amicorum Bernard Bichakjian (pp. 217-233). Maastricht: Shaker.
  • Seuren, P. A. M. (1988). Lexical meaning and presupposition. In W. Hüllen, & R. Schulze (Eds.), Understanding the lexicon: Meaning, sense and world knowledge in lexical semantics (pp. 170-187). Tübingen: Niemeyer.
  • Seuren, P. A. M. (1989). Notes on reflexivity. In F. J. Heyvaert, & F. Steurs (Eds.), Worlds behind words: Essays in honour of Prof. Dr. F.G. Droste on the occasion of his sixtieth birthday (pp. 85-95). Leuven: Leuven University Press.
  • Seuren, P. A. M. (2014). Universe restriction in the logic of language. In J. Hoeksema, & D. Gilbers (Eds.), Black Book: A Festschrift in Honor of Frans Zwarts (pp. 282-300). Groningen: University of Groningen.
  • Sidnell, J., & Enfield, N. J. (2014). Deixis and the interactional foundations of reference. In Y. Huang (Ed.), The Oxford handbook of pragmatics.
  • Sidnell, J., Kockelman, P., & Enfield, N. J. (2014). Community and social life. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 481-483). Cambridge: Cambridge University Press.
  • Sidnell, J., Enfield, N. J., & Kockelman, P. (2014). Interaction and intersubjectivity. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 343-345). Cambridge: Cambridge University Press.
  • Sidnell, J., & Enfield, N. J. (2014). The ontology of action, in interaction. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 423-446). Cambridge: Cambridge University Press.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (1988). Computer analysis of language data using the data transformation program TEXTWOLF in conjunction with a database system. In U. Jung (Ed.), Computers in applied linguistics and language teaching (pp. 155-159). Frankfurt am Main: Peter Lang.
  • Skiba, R. (1988). Computerunterstützte Analyse von sprachlichen Daten mit Hilfe des Datenumwandlungsprogramms TextWolf in Kombination mit einem Datenbanksystem. In B. Spillner (Ed.), Angewandte Linguistik und Computer (pp. 86-88). Tübingen: Gunter Narr.
  • Skiba, R. (1989). Funktionale Beschreibung von Lernervarietäten: Das Berliner Projekt P-MoLL. In N. Reiter (Ed.), Sprechen und Hören: Akte des 23. Linguistischen Kolloquiums, Berlin (pp. 181-191). Tübingen: Niemeyer.
  • Slobin, D. I. (2002). Cognitive and communicative consequences of linguistic diversity. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 7-23). Lund, Sweden: Lund University, Centre for Languages and Literature.
  • Sloetjes, H. (2014). ELAN: Multimedia annotation application. In J. Durand, U. Gut, & G. Kristoffersen (Eds.), The Oxford Handbook of Corpus Phonology (pp. 305-320). Oxford: Oxford University Press.
  • De Smedt, K., & Kempen, G. (1987). Incremental sentence production, self-correction, and coordination. In G. Kempen (Ed.), Natural language generation: New results in artificial intelligence, psychology and linguistics (pp. 365-376). Dordrecht: Nijhoff.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2014). Modelling language – vision interactions in the hub and spoke framework. In J. Mayor, & P. Gomez (Eds.), Computational Models of Cognitive Processes: Proceedings of the 13th Neural Computation and Psychology Workshop (NCPW13). (pp. 3-16). Singapore: World Scientific Publishing.

    Abstract

    Multimodal integration is a central characteristic of human cognition. However our understanding of the interaction between modalities and its influence on behaviour is still in its infancy. This paper examines the value of the Hub & Spoke framework (Plaut, 2002; Rogers et al., 2004; Dilkina et al., 2008; 2010) as a tool for exploring multimodal interaction in cognition. We present a Hub and Spoke model of language–vision information interaction and report the model’s ability to replicate a range of phonological, visual and semantic similarity word-level effects reported in the Visual World Paradigm (Cooper, 1974; Tanenhaus et al, 1995). The model provides an explicit connection between the percepts of language and the distribution of eye gaze and demonstrates the scope of the Hub-and-Spoke architectural framework by modelling new aspects of multimodal cognition.
  • De Swart, P., & Van Bergen, G. (2014). Unscrambling the lexical nature of weak definites. In A. Aguilar-Guevara, B. Le Bruyn, & J. Zwarts (Eds.), Weak referentiality (pp. 287-310). Amsterdam: Benjamins.

    Abstract

    We investigate how the lexical nature of weak definites influences the phenomenon of direct object scrambling in Dutch. Earlier experiments have indicated that weak definites are more resistant to scrambling than strong definites. We examine how the notion of weak definiteness used in this experimental work can be reduced to lexical connectedness. We explore four different ways of quantifying the relation between a direct object and the verb. Our results show that predictability of a verb given the object (verb cloze probability) provides the best fit to the weak/strong distinction used in the earlier experiments
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Trabasso, T., & Ozyurek, A. (1997). Communicating evaluation in narrative understanding. In T. Givon (Ed.), Conversation: Cognitive, communicative and social perspectives (pp. 268-302). Philadelphia, PA: Benjamins.
  • Trilsbeek, P., & Koenig, A. (2014). Increasing the future usage of endangered language archives. In D. Nathan, & P. Austin (Eds.), Language Documentation and Description vol 12 (pp. 151-163). London: SOAS. Retrieved from http://www.elpublishing.org/PID/142.
  • Van Leeuwen, T. M., Petersson, K. M., Langner, O., Rijpkema, M., & Hagoort, P. (2014). Color specificity in the human V4 complex: An fMRI repetition suppression study. In T. D. Papageorgiou, G. I. Cristopoulous, & S. M. Smirnakis (Eds.), Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications (pp. 275-295). Rijeka, Croatia: Intech. doi:10.5772/58278.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An algorithm for computing pitch contours on the basis of sentence accents and syntactic structure. In B. Müller (Ed.), Sprachsynthese: Zur Synthese von natürlich gesprochener Sprache aus Texten und Konzepten (pp. 157-182). Hildesheim: Georg Olms.
  • Van Putten, S. (2014). Left-dislocation and subordination in Avatime (Kwa). In R. Van Gijn, J. Hammond, D. Matic, S. van Putten, & A.-V. Galucio (Eds.), Information Structure and Reference Tracking in Complex Sentences. (pp. 71-98). Amsterdam: John Benjamins.

    Abstract

    Left dislocation is characterized by a sentence-initial element which is crossreferenced in the remainder of the sentence, and often set off by an intonation break. Because of these properties, left dislocation has been analyzed as an extraclausal phenomenon. Whether or not left dislocation can occur within subordinate clauses has been a matter of debate in the literature, but has never been checked against corpus data. This paper presents data from Avatime, a Kwa (Niger-Congo) language spoken in Ghana, showing that left dislocation occurs within subordinate clauses in spontaneous discourse. This poses a problem for the extraclausal analysis of left dislocation. I show that this problem can best be solved by assuming that Avatime allows the embedding of units larger than a clause
  • Van Valin Jr., R. D., & Mairal Usón, R. (2014). Interfacing the lexicon and an ontology in a linking system. In M. d. l. Á. Gómez González, F. J. Ruiz de Mendoza Ibáñez, & F. Gonzálvez-García (Eds.), Theory and practice in functional-cognitive space (pp. 205-228). Amsterdam: Benjamins.

    Abstract

    The aim of this paper is to discuss the repercussions of a conceptual orientation on two crucial parts of the Role and Reference Grammar (RRG) linking algorithm, that is, semantic representation and constructional schemas. Firstly, it is argued that adopting FunGramKB’s notion of conceptual logical structure (CLS) over standard RRG logical structures (LSs) has numerous advantages since meaning has now access to conceptual knowledge and therefore a CLS provides a format that goes beyond those aspects that are syntactically visible. The second part introduces the notion of the grammaticon, the component where constructional schemas actually reside. RRG constructional schemas are analyzed within a conceptual framework like that provided in FunGramKB. In essence, it is shown that a conceptual orientation to the RRG linking system by the addition of CLSs enriches the semantic representations in it substantially
  • Van Valin Jr., R. D. (2014). Role and Reference Grammar. In A. Carnie, Y. Sato, & D. Siddiqi (Eds.), Routledge handbook of syntax (pp. 579-603). London: Routledge.
  • Van Gijn, R. (2014). Yurakaré. In M. Crevels, & P. C. Muysken (Eds.), Las lenguas de Bolivia. Vol. 3: Oriente (pp. 135-174). La Paz: Plural Editores.
  • Verkerk, A. (2014). Where Alice fell into: Motion events from a parallel corpus. In B. Szmrecsanyi, & B. Wälchli (Eds.), Aggregating dialectology, typology, and register analysis: Linguistic variation in text and speech (pp. 324-354). Berlin: De Gruyter.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Von Stutterheim, C., & Klein, W. (1989). Referential movement in descriptive and narrative discourse. In R. Dietrich, & C. F. Graumann (Eds.), Language processing in social context (pp. 39-76). Amsterdam: Elsevier.
  • Weissenborn, J. (1988). Von der demonstratio ad oculos zur Deixis am Phantasma. Die Entwicklung der lokalen Referenz bei Kindern. In Karl Bühler's Theory of Language. Proceedings of the Conference held at Kirchberg, August 26, 1984 and Essen, November 21–24, 1984 (pp. 257-276). Amsterdam: Benjamins.
  • Wittenburg, P., Trilsbeek, P., & Wittenburg, F. (2014). Corpus archiving and dissemination. In J. Durand, U. Gut, & G. Kristoffersen (Eds.), The Oxford Handbook of Corpus Phonology (pp. 133-149). Oxford: Oxford University Press.
  • Wittenburg, P., Broeder, D., Offenga, F., & Willems, D. (2002). Metadata set and tools for multimedia/multimodal language resources. In M. Maybury (Ed.), Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC 2002). Workshop on Multimodel Resources and Multimodel Systems Evaluation. (pp. 9-13). Paris: European Language Resources Association.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I. (2014). Meaning at the feature level in sign languages. The case of name signs in Sign Language of the Netherlands (NGT). In R. Kager (Ed.), Where the Principles Fail. A Festschrift for Wim Zonneveld on the occasion of his 64th birthday (pp. 241-251). Utrecht: Utrecht Institute of Linguistics OTS.
  • Zwitserlood, I. (2002). Klassifikatoren in der Niederländischen Gebärdensprache (NGT). In H. Leuniger, & K. Wempe (Eds.), Gebärdensprachlinguistik 2000. Theorie und Anwendung. Vorträge vom Symposium "Gebärdensprachforschung im deutschsprachigem Raum", Frankfurt a.M., 11.-13. Juni 1999 (pp. 113-126). Hamburg: Signum Verlag.

Share this page