Publications

Displaying 1 - 10 of 10
  • Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.

    Abstract

    The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language.
  • Araújo, S., Faísca, L., Bramão, I., Reis, A., & Petersson, K. M. (2015). Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readers. Brain and Language, 141, 16-27. doi:10.1016/j.bandl.2014.11.007.

    Abstract

    This ERP study investigated the cognitive nature of the P1–N1 components during orthographic processing. We used an implicit reading task with various types of stimuli involving different amounts of sublexical or lexical orthographic processing (words, pseudohomophones, pseudowords, nonwords, and symbols), and tested average and dyslexic readers. An orthographic regularity effect (pseudowords– nonwords contrast) was observed in the average but not in the dyslexic group. This suggests an early sensitivity to the dependencies among letters in word-forms that reflect orthographic structure, while the dyslexic brain apparently fails to be appropriately sensitive to these complex features. Moreover, in the adults the N1-response may already reflect lexical access: (i) the N1 was sensitive to the familiar vs. less familiar orthographic sequence contrast; (ii) and early effects of the phonological form (words-pseudohomophones contrast) were also found. Finally, the later N320 component was attenuated in the dyslexics, suggesting suboptimal processing in later stages of phonological analysis.
  • Araújo, S., Reis, A., Petersson, K. M., & Faísca, L. (2015). Rapid automatized naming and reading performance: A meta-analysis. Journal of Educational Psychology, 107(3), 868-883. doi:10.1037/edu0000006.

    Abstract

    Evidence that rapid naming skill is associated with reading ability has become increasingly prevalent in recent years. However, there is considerable variation in the literature concerning the magnitude of this relationship. The objective of the present study was to provide a comprehensive analysis of the evidence on the relationship between rapid automatized naming (RAN) and reading performance. To this end, we conducted a meta-analysis of the correlational relationship between these 2 constructs to (a) determine the overall strength of the RAN–reading association and (b) identify variables that systematically moderate this relationship. A random-effects model analysis of data from 137 studies (857 effect sizes; 28,826 participants) indicated a moderate-to-strong relationship between RAN and reading performance (r = .43, I2 = 68.40). Further analyses revealed that RAN contributes to the 4 measures of reading (word reading, text reading, non-word reading, and reading comprehension), but higher coefficients emerged in favor of real word reading and text reading. RAN stimulus type and type of reading score were the factors with the greatest moderator effect on the magnitude of the RAN–reading relationship. The consistency of orthography and the subjects’ grade level were also found to impact this relationship, although the effect was contingent on reading outcome. It was less evident whether the subjects’ reading proficiency played a role in the relationship. Implications for future studies are discussed.
  • Carlsson, K., Petrovic, P., Skare, S., Petersson, K. M., & Ingvar, M. (2000). Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience, 12(4), 691-703. doi:10.1162/089892900562318.
  • Ingvar, M., & Petersson, K. M. (2000). Functional maps and brain networks. In A. W. Toga (Ed.), Brain mapping: The systems (pp. 111-140). San Diego: Academic Press.
  • Lansner, A., Sandberg, A., Petersson, K. M., & Ingvar, M. (2000). On forgetful attractor network memories. In H. Malmgren, M. Borga, & L. Niklasson (Eds.), Artificial neural networks in medicine and biology: Proceedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000 (pp. 54-62). Heidelberg: Springer Verlag.

    Abstract

    A recurrently connected attractor neural network with a Hebbian learning rule is currently our best ANN analogy for a piece cortex. Functionally biological memory operates on a spectrum of time scales with regard to induction and retention, and it is modulated in complex ways by sub-cortical neuromodulatory systems. Moreover, biological memory networks are commonly believed to be highly distributed and engage many co-operating cortical areas. Here we focus on the temporal aspects of induction and retention of memory in a connectionist type attractor memory model of a piece of cortex. A continuous time, forgetful Bayesian-Hebbian learning rule is described and compared to the characteristics of LTP and LTD seen experimentally. More generally, an attractor network implementing this learning rule can operate as a long-term, intermediate-term, or short-term memory. Modulation of the print-now signal of the learning rule replicates some experimental memory phenomena, like e.g. the von Restorff effect.
  • Petersson, K. M., Reis, A., Askelöf, S., Castro-Caldas, A., & Ingvar, M. (2000). Language processing modulated by literacy: A network analysis of verbal repetition in literate and illiterate subjects. Journal of Cognitive Neuroscience, 12(3), 364-382. doi:10.1162/089892900562147.
  • Petrovic, P., Petersson, K. M., Ghatan, P., Stone-Elander, S., & Ingvar, M. (2000). Pain related cerebral activation is altered by a distracting cognitive task. Pain, 85, 19-30.

    Abstract

    It has previously been suggested that the activity in sensory regions of the brain can be modulated by attentional mechanisms during parallel cognitive processing. To investigate whether such attention-related modulations are present in the processing of pain, the regional cerebral blood ¯ow was measured using [15O]butanol and positron emission tomography in conditions involving both pain and parallel cognitive demands. The painful stimulus consisted of the standard cold pressor test and the cognitive task was a computerised perceptual maze test. The activations during the maze test reproduced findings in previous studies of the same cognitive task. The cold pressor test evoked signi®cant activity in the contralateral S1, and bilaterally in the somatosensory association areas (including S2), the ACC and the mid-insula. The activity in the somatosensory association areas and periaqueductal gray/midbrain were significantly modified, i.e. relatively decreased, when the subjects also were performing the maze task. The altered activity was accompanied with significantly lower ratings of pain during the cognitive task. In contrast, lateral orbitofrontal regions showed a relative increase of activity during pain combined with the maze task as compared to only pain, which suggests the possibility of the involvement of frontal cortex in modulation of regions processing pain
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. Neurocomputing, 32(33), 987-994. doi:10.1016/S0925-2312(00)00270-8.

    Abstract

    Capacity limited memory systems need to gradually forget old information in order to avoid catastrophic forgetting where all stored information is lost. This can be achieved by allowing new information to overwrite old, as in the so-called palimpsest memory. This paper describes a new such learning rule employed in an attractor neural network. The network does not exhibit catastrophic forgetting, has a capacity dependent on the learning time constant and exhibits recency e!ects in retrieval
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. In J. M. Bower (Ed.), Computational Neuroscience: Trends in Research 2000 (pp. 987-994). Amsterdam: Elsevier.

Share this page