Publications

Displaying 1 - 22 of 22
  • Lopopolo, A., Van de Bosch, A., Petersson, K. M., & Willems, R. M. (2021). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language, 2(1), 152-175. doi:10.1162/nol_a_00029.

    Abstract

    Finding the structure of a sentence — the way its words hold together to convey meaning — is a fundamental step in language comprehension. Several brain regions, including the left inferior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal pole, are supposed to support this operation. The exact role of these areas is nonetheless still debated. In this paper we investigate the hypothesis that different brain regions could be sensitive to different kinds of syntactic computations. We compare the fit of phrase-structure and dependency structure descriptors to activity in brain areas using fMRI. Our results show a division between areas with regard to the type of structure computed, with the left ATP and left IFG favouring dependency structures and left pSTG favouring phrase structures.
  • Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528-1540. doi:10.1016/j.neuroimage.2010.05.048.

    Abstract

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations.
  • Araújo, S., Pacheco, A., Faísca, L., Petersson, K. M., & Reis, A. (2010). Visual rapid naming and phonological abilities: Different subtypes in dyslexic children. International Journal of Psychology, 45, 443-452. doi:10.1080/00207594.2010.499949.

    Abstract

    One implication of the double-deficit hypothesis for dyslexia is that there should be subtypes of dyslexic readers that exhibit rapid naming deficits with or without concomitant phonological processing problems. In the current study, we investigated the validity of this hypothesis for Portuguese orthography, which is more consistent than English orthography, by exploring different cognitive profiles in a sample of dyslexic children. In particular, we were interested in identifying readers characterized by a pure rapid automatized naming deficit. We also examined whether rapid naming and phonological awareness independently account for individual differences in reading performance. We characterized the performance of dyslexic readers and a control group of normal readers matched for age on reading, visual rapid naming and phonological processing tasks. Our results suggest that there is a subgroup of dyslexic readers with intact phonological processing capacity (in terms of both accuracy and speed measures) but poor rapid naming skills. We also provide evidence for an independent association between rapid naming and reading competence in the dyslexic sample, when the effect of phonological skills was controlled. Altogether, the results are more consistent with the view that rapid naming problems in dyslexia represent a second core deficit rather than an exclusive phonological explanation for the rapid naming deficits. Furthermore, additional non-phonological processes, which subserve rapid naming performance, contribute independently to reading development.
  • Bramão, I., Faísca, L., Forkstam, C., Reis, A., & Petersson, K. M. (2010). Cortical brain regions associated with color processing: An FMRI study. The Open Neuroimaging Journal, 4, 164-173. doi:10.2174/1874440001004010164.

    Abstract

    To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-sense objects we examined functional magnetic resonance imaging (FMRI) responses during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-sense objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural and artifacts objects, but not for non-sense objects. The recognition of non-sense colored objects compared to the recognition of color objects activated the posterior cingulate/precuneus (BA 7/23/31), suggesting that color attribute induces the mental operation of trying to associate a non-sense composition with a familiar objects. When color objects (both natural and artifacts) were contrasted with color nonobjects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that improve object recognition (based on behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition
  • Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2010). The influence of surface color information and color knowledge information in object recognition. American Journal of Psychology, 123, 437-466. Retrieved from http://www.jstor.org/stable/10.5406/amerjpsyc.123.4.0437.

    Abstract

    In order to clarify whether the influence of color knowledge information in object recognition depends on the presence of the appropriate surface color, we designed a name—object verification task. The relationship between color and shape information provided by the name and by the object photo was manipulated in order to assess color interference independently of shape interference. We tested three different versions for each object: typically colored, black and white, and nontypically colored. The response times on the nonmatching trials were used to measure the interference between the name and the photo. We predicted that the more similar the name and the photo are, the longer it would take to respond. Overall, the color similarity effect disappeared in the black-and-white and nontypical color conditions, suggesting that the influence of color knowledge on object recognition depends on the presence of the appropriate surface color information.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 188-220). Malden, MA: Wiley-Blackwell.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. Language learning, 60(s2), 188-220. doi:10.1111/j.1467-9922.2010.00606.x.

    Abstract

    This article briefly reviews some recent work on artificial language learning in children and adults. The final part of the article is devoted to a theoretical formulation of the language learning problem from a mechanistic neurobiological viewpoint and we show that it is logically possible to combine the notion of innate language constraints with, for example, the notion of domain general learning mechanisms. A growing body of empirical evidence suggests that the mechanisms involved in artificial language learning and in structured sequence processing are shared with those of natural language acquisition and natural language processing. Finally, by theoretically analyzing a formal learning model, we highlight Fodor’s insight that it is logically possible to combine innate, domain-specific constraints with domain-general learning mechanisms.
  • Groen, W. B., Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van der Gaag, R. J., Hagoort, P., & Buitelaar, J. K. (2010). Semantic, factual, and social language comprehension in adolescents with autism: An fMRI study. Cerebral Cortex, 20(8), 1937-1945. doi:10.1093/cercor/bhp264.

    Abstract

    Language in high-functioning autism is characterized by pragmatic and semantic deficits, and people with autism have a reduced tendency to integrate information. Because the left and right inferior frontal (LIF and RIF) regions are implicated with integration of speaker information, world knowledge, and semantic knowledge, we hypothesized that abnormal functioning of the LIF and RIF regions might contribute to pragmatic and semantic language deficits in autism. Brain activation of sixteen 12- to 18-year-old, high-functioning autistic participants was measured with functional magnetic resonance imaging during sentence comprehension and compared with that of twenty-six matched controls. The content of the pragmatic sentence was congruent or incongruent with respect to the speaker characteristics (male/female, child/adult, and upper class/lower class). The semantic- and world-knowledge sentences were congruent or incongruent with respect to semantic expectancies and factual expectancies about the world, respectively. In the semanticknowledge and world-knowledge condition, activation of the LIF region did not differ between groups. In sentences that required integration of speaker information, the autism group showed abnormally reduced activation of the LIF region. The results suggest that people with autism may recruit the LIF region in a different manner in tasks that demand integration of social information.
  • Meulenbroek, O., Kessels, R. P. C., De Rover, M., Petersson, K. M., Olde Rikkert, M. G. M., Rijpkema, M., & Fernández, G. (2010). Age-effects on associative object-location memory. Brain Research, 1315, 100-110. doi:10.1016/j.brainres.2009.12.011.

    Abstract

    Aging is accompanied by an impairment of associative memory. The medial temporal lobe and fronto-striatal network, both involved in associative memory, are known to decline functionally and structurally with age, leading to the so-called associative binding deficit and the resource deficit. Because the MTL and fronto-striatal network interact, they might also be able to support each other. We therefore employed an episodic memory task probing memory for sequences of object–location associations, where the demand on self-initiated processing was manipulated during encoding: either all the objects were visible simultaneously (rich environmental support) or every object became visible transiently (poor environmental support). Following the concept of resource deficit, we hypothesised that the elderly probably have difficulty using their declarative memory system when demands on self-initiated processing are high (poor environmental support). Our behavioural study showed that only the young use the rich environmental support in a systematic way, by placing the objects next to each other. With the task adapted for fMRI, we found that elderly showed stronger activity than young subjects during retrieval of environmentally richly encoded information in the basal ganglia, thalamus, left middle temporal/fusiform gyrus and right medial temporal lobe (MTL). These results indicate that rich environmental support leads to recruitment of the declarative memory system in addition to the fronto-striatal network in elderly, while the young use more posterior brain regions likely related to imagery. We propose that elderly try to solve the task by additional recruitment of stimulus-response associations, which might partly compensate their limited attentional resources.
  • Petrovic, P., Kalso, E., Petersson, K. M., Andersson, J., Fransson, P., & Ingvar, M. (2010). A prefrontal non-opioid mechanism in placebo analgesia. Pain, 150, 59-65. doi:10.1016/j.pain.2010.03.011.

    Abstract

    ehavioral studies have suggested that placebo analgesia is partly mediated by the endogenous opioid system. Expanding on these results we have shown that the opioid-receptor-rich rostral anterior cingulate cortex (rACC) is activated in both placebo and opioid analgesia. However, there are also differences between the two treatments. While opioids have direct pharmacological effects, acting on the descending pain inhibitory system, placebo analgesia depends on neocortical top-down mechanisms. An important difference may be that expectations are met to a lesser extent in placebo treatment as compared with a specific treatment, yielding a larger error signal. As these processes previously have been shown to influence other types of perceptual experiences, we hypothesized that they also may drive placebo analgesia. Imaging studies suggest that lateral orbitofrontal cortex (lObfc) and ventrolateral prefrontal cortex (vlPFC) are involved in processing expectation and error signals. We re-analyzed two independent functional imaging experiments related to placebo analgesia and emotional placebo to probe for a differential processing in these regions during placebo treatment vs. opioid treatment and to test if this activity is associated with the placebo response. In the first dataset lObfc and vlPFC showed an enhanced activation in placebo analgesia vs. opioid analgesia. Furthermore, the rACC activity co-varied with the prefrontal regions in the placebo condition specifically. A similar correlation between rACC and vlPFC was reproduced in another dataset involving emotional placebo and correlated with the degree of the placebo effect. Our results thus support that placebo is different from specific treatment with a prefrontal top-down influence on rACC.
  • Reis, A., Petersson, K. M., & Faísca, L. (2010). Neuroplasticidade: Os efeitos de aprendizagens específicas no cérebro humano. In C. Nunes, & S. N. Jesus (Eds.), Temas actuais em Psicologia (pp. 11-26). Faro: Universidade do Algarve.
  • Reis, A., Faísca, L., Castro, S.-L., & Petersson, K. M. (2010). Preditores da leitura ao longo da escolaridade: Um estudo com alunos do 1 ciclo do ensino básico. In Actas do VII simpósio nacional de investigação em psicologia (pp. 3117-3132).

    Abstract

    A aquisição da leitura decorre ao longo de diversas etapas, desde o momento em que a criança inicia o contacto com o alfabeto até ao momento em que se torna um leitor competente, apto a ler correcta e fluentemente. Compreender a evolução desta competência através de uma análise da diferenciação do peso de variáveis preditoras da leitura possibilita teorizar sobre os mecanismos cognitivos envolvidos nas diferentes fases de desenvolvimento da leitura. Realizámos um estudo transversal com 568 alunos do segundo ao quarto ano do primeiro ciclo do Ensino Básico, em que se avaliou o impacto de capacidades de processamento fonológico, nomeação rápida, conhecimento letra-som e vocabulário, bem como de capacidades cognitivas mais gerais (inteligência não-verbal e memória de trabalho), na exactidão e velocidade da leitura. De uma forma geral, os resultados mostraram que, apesar da consciência fonológica permanecer como o preditor mais importante da exactidão e fluência da leitura, o seu peso decresce à medida que a escolaridade aumenta. Observou-se também que, à medida que o contributo da consciência fonológica para a explicação da velocidade de leitura diminuía, aumentava o contributo de outras variáveis mais associadas ao automatismo e reconhecimento lexical, tais como a nomeação rápida e o vocabulário. Em suma, podemos dizer que ao longo da escolaridade se observa uma alteração dinâmica dos processos cognitivos subjacentes à leitura, o que sugere que a criança evolui de uma estratégia de leitura ancorada em processamentos sub-lexicais, e como tal mais dependente de processamentos fonológicos, para uma estratégia baseada no reconhecimento ortográfico das palavras.
  • Snijders, T. M., Petersson, K. M., & Hagoort, P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52, 1633-1644. doi:10.1016/j.neuroimage.2010.05.035.

    Abstract

    In a recent fMRI study we showed that left posterior middle temporal gyrus (LpMTG) subserves the retrieval of a word's lexical-syntactic properties from the mental lexicon (long-term memory), while left posterior inferior frontal gyrus (LpIFG) is involved in unifying (on-line integration of) this information into a sentence structure (Snijders et al., 2009). In addition, the right IFG, right MTG, and the right striatum were involved in the unification process. Here we report results from a psychophysical interactions (PPI) analysis in which we investigated the effective connectivity between LpIFG and LpMTG during unification, and how the right hemisphere areas and the striatum are functionally connected to the unification network. LpIFG and LpMTG both showed enhanced connectivity during the unification process with a region slightly superior to our previously reported LpMTG. Right IFG better predicted right temporal activity when unification processes were more strongly engaged, just as LpIFG better predicted left temporal activity. Furthermore, the striatum showed enhanced coupling to LpIFG and LpMTG during unification. We conclude that bilateral inferior frontal and posterior temporal regions are functionally connected during sentence-level unification. Cortico-subcortical connectivity patterns suggest cooperation between inferior frontal and striatal regions in performing unification operations on lexical-syntactic representations retrieved from LpMTG.
  • Uddén, J., Folia, V., & Petersson, K. M. (2010). The neuropharmacology of implicit learning. Current Neuropharmacology, 8, 367-381. doi:10.2174/157015910793358178.

    Abstract

    Two decades of pharmacologic research on the human capacity to implicitly acquire knowledge as well as cognitive skills and procedures have yielded surprisingly few conclusive insights. We review the empirical literature of the neuropharmacology of implicit learning. We evaluate the findings in the context of relevant computational models related to neurotransmittors such as dopamine, serotonin, acetylcholine and noradrenalin. These include models for reinforcement learning, sequence production, and categorization. We conclude, based on the reviewed literature, that one can predict improved implicit acquisition by moderately elevated dopamine levels and impaired implicit acquisition by moderately decreased dopamine levels. These effects are most prominent in the dorsal striatum. This is supported by a range of behavioral tasks in the empirical literature. Similar predictions can be made for serotonin, although there is yet a lack of support in the literature for serotonin involvement in classical implicit learning tasks. There is currently a lack of evidence for a role of the noradrenergic and cholinergic systems in implicit and related forms of learning. GABA modulators, including benzodiazepines, seem to affect implicit learning in a complex manner and further research is needed. Finally, we identify allosteric AMPA receptors modulators as a potentially interesting target for future investigation of the neuropharmacology of procedural and implicit learning.
  • Van Leeuwen, T. M., Petersson, K. M., & Hagoort, P. (2010). Synaesthetic colour in the brain: Beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls. PLoS One, 5(8), E12074. doi:10.1371/journal.pone.0012074.

    Abstract

    Background: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. Methodology/Principal Findings: First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Conclusions/Significance: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
  • Gisselgard, J., Petersson, K. M., Baddeley, A., & Ingvar, M. (2003). The irrelevant speech effect: A PET study. Neuropsychologia, 41, 1899-1911. doi:10.1016/S0028-3932(03)00122-2.

    Abstract

    Positron emission tomography (PET) was performed in normal volunteers during a serial recall task under the influence of irrelevant speech comprising both single item repetition and multi-item sequences. An interaction approach was used to identify brain areas specifically related to the irrelevant speech effect. We interpreted activations as compensatory recruitment of complementary working memory processing, and decreased activity in terms of suppression of task relevant areas invoked by the irrelevant speech. The interaction between the distractors and working memory revealed a significant effect in the left, and to a lesser extent in the right, superior temporal region, indicating that initial phonological processing was relatively suppressed. Additional areas of decreased activity were observed in an a priori defined cortical network related to verbalworking memory, incorporating the bilateral superior temporal and inferior/middle frontal corticesn extending into Broca’s area on the left. We also observed a weak activation in the left inferior parietal cortex, a region suggested to reflect the phonological store, the subcomponent where the interference is assumed to take place. The results suggest that the irrelevant speech effect is correlated with and thus tentatively may be explained in terms of a suppression of components of the verbal working memory network as outlined. The results can be interpreted in terms of inhibitory top–down attentional mechanisms attenuating the influence of the irrelevant speech, although additional studies are clearly necessary to more fully characterize the nature of this phenomenon and its theoretical implications for existing short-term memory models
  • Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. Neuroimage, 20, 1934-1943. doi:10.1016/j.neuroimage.2003.07.017.

    Abstract

    The posterior medial parietal cortex and the left prefrontal cortex have both been implicated in the recollection of past episodes. In order to clarify their functional significance, we performed this functional magnetic resonance imaging study, which employed event-related source memory and item recognition retrieval of words paired with corresponding imagined or viewed pictures. Our results suggest that episodic source memory is related to a functional network including the posterior precuneus and the left lateral prefrontal cortex. This network is activated during explicit retrieval of imagined pictures and results from the retrieval of item-context associations. This suggests that previously imagined pictures provide a context with which encoded words can be more strongly associated.
  • Nyberg, L., Marklund, P., Persson, J., Cabeza, R., Forkstam, C., Petersson, K. M., & Ingvar, M. (2003). Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia, 41(3), 371-377. doi:10.1016/S0028-3932(02)00168-9.

    Abstract

    Regions of the prefrontal cortex (PFC) are typically activated in many different cognitive functions. In most studies, the focus has been on the role of specific PFC regions in specific cognitive domains, but more recently similarities in PFC activations across cognitive domains have been stressed. Such similarities may suggest that a region mediates a common function across a variety of cognitive tasks. In this study, we compared the activation patterns associated with tests of working memory, semantic memory and episodic memory. The results converged on a general involvement of four regions across memory tests. These were located in left frontopolar cortex, left mid-ventrolateral PFC, left mid-dorsolateral PFC and dorsal anterior cingulate cortex. These findings provide evidence that some PFC regions are engaged during many different memory tests. The findings are discussed in relation to theories about the functional contribition of the PFC regions and the architecture of memory.
  • Nyberg, L., Sandblom, J., Jones, S., Stigsdotter Neely, A., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13728-13733. doi:10.1073/pnas.1735487100.

    Abstract

    Cognitive studies show that both younger and older adults can increase their memory performance after training in using a visuospatial mnemonic, although age-related memory deficits tend to be magnified rather than reduced after training. Little is known about the changes in functional brain activity that accompany training-induced memory enhancement, and whether age-related activity changes are associated with the size of training-related gains. Here, we demonstrate that younger adults show increased activity during memory encoding in occipito-parietal and frontal brain regions after learning the mnemonic. Older adults did not show increased frontal activity, and only those elderly persons who benefited from the mnemonic showed increased occipitoparietal activity. These findings suggest that age-related differences in cognitive reserve capacity may reflect both a frontal processing deficiency and a posterior production deficiency.
  • Petersson, K. M., Sandblom, J., Elfgren, C., & Ingvar, M. (2003). Instruction-specific brain activations during episodic encoding: A generalized level of processing effect. Neuroimage, 20, 1795-1810. doi:10.1016/S1053-8119(03)00414-2.

    Abstract

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
  • Reis, A., Guerreiro, M., & Petersson, K. M. (2003). A sociodemographic and neuropsychological characterization of an illiterate population. Applied Neuropsychology, 10, 191-204. doi:10.1207/s15324826an1004_1.

    Abstract

    The objectives of this article are to characterize the performance and to discuss the performance differences between literate and illiterate participants in a well-defined study population.We describe the participant-selection procedure used to investigate this population. Three groups with similar sociocultural backgrounds living in a relatively homogeneous fishing community in southern Portugal were characterized in terms of socioeconomic and sociocultural background variables and compared on a simple neuropsychological test battery; specifically, a literate group with more than 4 years of education (n = 9), a literate group with 4 years of education (n = 26), and an illiterate group (n = 31) were included in this study.We compare and discuss our results with other similar studies on the effects of literacy and illiteracy. The results indicate that naming and identification of real objects, verbal fluency using ecologically relevant semantic criteria, verbal memory, and orientation are not affected by literacy or level of formal education. In contrast, verbal working memory assessed with digit span, verbal abstraction, long-term semantic memory, and calculation (i.e., multiplication) are significantly affected by the level of literacy. We indicate that it is possible, with proper participant-selection procedures, to exclude general cognitive impairment and to control important sociocultural factors that potentially could introduce bias when studying the specific effects of literacy and level of formal education on cognitive brain function.
  • Reis, A., & Petersson, K. M. (2003). Educational level, socioeconomic status and aphasia research: A comment on Connor et al. (2001)- Effect of socioeconomic status on aphasia severity and recovery. Brain and Language, 87, 449-452. doi:10.1016/S0093-934X(03)00140-8.

    Abstract

    Is there a relation between socioeconomic factors and aphasia severity and recovery? Connor, Obler, Tocco, Fitzpatrick, and Albert (2001) describe correlations between the educational level and socioeconomic status of aphasic subjects with aphasia severity and subsequent recovery. As stated in the introduction by Connor et al. (2001), studies of the influence of educational level and literacy (or illiteracy) on aphasia severity have yielded conflicting results, while no significant link between socioeconomic status and aphasia severity and recovery has been established. In this brief note, we will comment on their findings and conclusions, beginning first with a brief review of literacy and aphasia research, and complexities encountered in these fields of investigation. This serves as a general background to our specific comments on Connor et al. (2001), which will be focusing on methodological issues and the importance of taking normative values in consideration when subjects with different socio-cultural or socio-economic backgrounds are assessed.

Share this page