Publications

Displaying 1 - 15 of 15
  • Araújo, S., Faísca, L., Reis, A., Marques, J. F., & Petersson, K. M. (2016). Visual naming deficits in dyslexia: An ERP investigation of different processing domains. Neuropsychologia, 91, 61-76. doi:10.1016/j.neuropsychologia.2016.07.007.

    Abstract

    Naming speed deficits are well documented in developmental dyslexia, expressed by slower naming times and more errors in response to familiar items. Here we used event-related potentials (ERPs) to examine at what processing level the deficits in dyslexia emerge during a discrete-naming task. Dyslexic and skilled adult control readers performed a primed object-naming task, in which the relationship between the prime and the target was manipulated along perceptual, semantic and phonological dimensions. A 3×2 design that crossed Relationship Type (Visual, Phonemic Onset, and Semantic) with Relatedness (Related and Unrelated) was used. An attenuated N/P190 – indexing early visual processing – and N300 – which index late visual processing – was observed to pictures preceded by perceptually related (vs. unrelated) primes in the control but not in the dyslexic group. These findings suggest suboptimal processing in early stages of object processing in dyslexia, when integration and mapping of perceptual information to a more form-specific percept in memory take place. On the other hand, both groups showed an N400 effect associated with semantically related pictures (vs. unrelated), taken to reflect intact integration of semantic similarities in both dyslexic and control readers. We also found an electrophysiological effect of phonological priming in the N400 range – that is, an attenuated N400 to objects preceded by phonemic related primes vs. unrelated – while it showed a more widespread distributed and more pronounced over the right hemisphere in the dyslexics. Topographic differences between groups might have originated from a word form encoding process with different characteristics in dyslexics compared to control readers.
  • Bramão, I., Reis, A., Petersson, K. M., & Faísca, L. (2016). Knowing that strawberries are red and seeing red strawberries: The interaction between surface colour and colour knowledge information. Journal of Cognitive Psychology, 28(6), 641-657. doi:10.1080/20445911.2016.1182171.

    Abstract

    his study investigates the interaction between surface and colour knowledge information during object recognition. In two different experiments, participants were instructed to decide whether two presented stimuli belonged to the same object identity. On the non-matching trials, we manipulated the shape and colour knowledge information activated by the two stimuli by creating four different stimulus pairs: (1) similar in shape and colour (e.g. TOMATO–APPLE); (2) similar in shape and dissimilar in colour (e.g. TOMATO–COCONUT); (3) dissimilar in shape and similar in colour (e.g. TOMATO–CHILI PEPPER) and (4) dissimilar in both shape and colour (e.g. TOMATO–PEANUT). The object pictures were presented in typical and atypical colours and also in black-and-white. The interaction between surface and colour knowledge showed to be contingent upon shape information: while colour knowledge is more important for recognising structurally similar shaped objects, surface colour is more prominent for recognising structurally dissimilar shaped objects.
  • Silva, S., Petersson, K. M., & Castro, S. (2016). Rhythm in the brain: Is music special? In D. Da Silva Marques, & J. Avila-Toscano (Eds.), Neuroscience to neuropsychology: The study of the human brain (pp. 29-54). Barranquilla, Colombia: Ediciones CUR.
  • Silva, S., Reis, A., Casaca, L., Petersson, K. M., & Faísca, L. (2016). When the eyes no longer lead: Familiarity and length effects eye-voice span. Frontiers in Psychology, 7: 1720. doi:10.3389/fpsyg.2016.01720.

    Abstract

    During oral reading, the eyes tend to be ahead of the voice (eye-voice span, EVS). It has been hypothesized that the extent to which this happens depends on the automaticity of reading processes, namely on the speed of print-to-sound conversion. We tested whether EVS is affected by another automaticity component – immunity from interference. To that end, we manipulated word familiarity (high-frequency, lowfrequency, and pseudowords, PW) and word length as proxies of immunity from interference, and we used linear mixed effects models to measure the effects of both variables on the time interval at which readers do parallel processing by gazing at word N C 1 while not having articulated word N yet (offset EVS). Parallel processing was enhanced by automaticity, as shown by familiarity length interactions on offset EVS, and it was impeded by lack of automaticity, as shown by the transformation of offset EVS into voice-eye span (voice ahead of the offset of the eyes) in PWs. The relation between parallel processing and automaticity was strengthened by the fact that offset EVS predicted reading velocity. Our findings contribute to understand how the offset EVS, an index that is obtained in oral reading, may tap into different components of automaticity that underlie reading ability, oral or silent. In addition, we compared the duration of the offset EVS with the average reference duration of stages in word production, and we saw that the offset EVS may accommodate for more than the articulatory programming stage of word N.
  • Silva, S., Faísca, L., Araújo, S., Casaca, L., Carvalho, L., Petersson, K. M., & Reis, A. (2016). Too little or too much? Parafoveal preview benefits and parafoveal load costs in dyslexic adults. Annals of Dyslexia, 66(2), 187-201. doi:10.1007/s11881-015-0113-z.

    Abstract

    Two different forms of parafoveal dysfunction have been hypothesized as core deficits of dyslexic individuals: reduced parafoveal preview benefits (“too little parafovea”) and increased costs of parafoveal load (“too much parafovea”). We tested both hypotheses in a single eye-tracking experiment using a modified serial rapid automatized naming (RAN) task. Comparisons between dyslexic and non-dyslexic adults showed reduced parafoveal preview benefits in dyslexics, without increased costs of parafoveal load. Reduced parafoveal preview benefits were observed in a naming task, but not in a silent letter-finding task, indicating that the parafoveal dysfunction may be consequent to the overload with extracting phonological information from orthographic input. Our results suggest that dyslexics’ parafoveal dysfunction is not based on strict visuo-attentional factors, but nevertheless they stress the importance of extra-phonological processing. Furthermore, evidence of reduced parafoveal preview benefits in dyslexia may help understand why serial RAN is an important reading predictor in adulthood
  • Weber, K., Christiansen, M., Petersson, K. M., Indefrey, P., & Hagoort, P. (2016). fMRI syntactic and lexical repetition effects reveal the initial stages of learning a new language. The Journal of Neuroscience, 36, 6872-6880. doi:10.1523/JNEUROSCI.3180-15.2016.

    Abstract

    When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared to the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning online using functional magnetic resonance imaging (fMRI). In left inferior frontal gyrus (LIFG) and posterior temporal cortex the repetition of novel syntactic structures led to repetition enhancement, while repetition of known structures resulted in repetition suppression. Additional verb repetition led to an
    increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities.
  • Carlsson, K., Andersson, J., Petrovic, P., Petersson, K. M., Öhman, A., & Ingvar, M. (2006). Predictability modulates the affective and sensory-discriminative neural processing of pain. NeuroImage, 32(4), 1804-1814. doi:10.1016/j.neuroimage.2006.05.027.

    Abstract

    Knowing what is going to happen next, that is, the capacity to predict upcoming events, modulates the extent to which aversive stimuli induce stress and anxiety. We explored this issue by manipulating the temporal predictability of aversive events by means of a visual cue, which was either correlated or uncorrelated with pain stimuli (electric shocks). Subjects reported lower levels of anxiety, negative valence and pain intensity when shocks were predictable. In addition to attenuate focus on danger, predictability allows for correct temporal estimation of, and selective attention to, the sensory input. With functional magnetic resonance imaging, we found that predictability was related to enhanced activity in relevant sensory-discriminative processing areas, such as the primary and secondary sensory cortex and posterior insula. In contrast, the unpredictable more aversive context was correlated to brain activity in the anterior insula and the orbitofrontal cortex, areas associated with affective pain processing. This context also prompted increased activity in the posterior parietal cortex and lateral prefrontal cortex that we attribute to enhanced alertness and sustained attention during unpredictability.
  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32(2), 956-967. doi:10.1016/j.neuroimage.2006.03.057.

    Abstract

    The human brain supports acquisition mechanisms that extract structural regularities implicitly from experience without the induction of an explicit model. It has been argued that the capacity to generalize to new input is based on the acquisition of abstract representations, which reflect underlying structural regularities in the input ensemble. In this study, we explored the outcome of this acquisition mechanism, and to this end, we investigated the neural correlates of artificial syntactic classification using event-related functional magnetic resonance imaging. The participants engaged once a day during an 8-day period in a short-term memory acquisition task in which consonant-strings generated from an artificial grammar were presented in a sequential fashion without performance feedback. They performed reliably above chance on the grammaticality classification tasks on days 1 and 8 which correlated with a corticostriatal processing network, including frontal, cingulate, inferior parietal, and middle occipital/occipitotemporal regions as well as the caudate nucleus. Part of the left inferior frontal region (BA 45) was specifically related to syntactic violations and showed no sensitivity to local substring familiarity. In addition, the head of the caudate nucleus correlated positively with syntactic correctness on day 8 but not day 1, suggesting that this region contributes to an increase in cognitive processing fluency.
  • Jones, S., Nyberg, L., Sandblom, J., Stigsdotter Neely, A., Ingvar, M., Petersson, K. M., & Bäckman, L. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. Neuroscience and Biobehavioral Reviews, 30(6), 864-871. doi:10.1016/j.neubiorev.2006.06.012.

    Abstract

    There is evidence for cognitive as well as neural plasticity across the adult life span, although aging is associated with certain constraints on plasticity. In the current paper, we argue that the age-related reduction in cognitive plasticity may be due to (a) deficits in general processing resources, and (b) failure to engage in task-relevant cognitive operations. Memory-training research suggests that age-related processing deficits (e.g., executive functions, speed) hinder older adults from utilizing mnemonic techniques as efficiently as the young, and that this age difference is reflected by diminished frontal activity during mnemonic use. Additional constraints on memory plasticity in old age are related to difficulties that are specific to the task, such as creating visual images, as well as in binding together the information to be remembered. These deficiencies are paralleled by reduced activity in occipito-parietal and medial–temporal regions, respectively. Future attempts to optimize intervention-related gains in old age should consider targeting both general processing and task-specific origins of age-associated reductions in cognitive plasticity.
  • Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., Adolfsson, R., Bäckman, L., Nilsson, L.-G., Petersson, K. M., & Nyberg, L. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein E ε4 carriers. Brain, 129(5), 1240-1248. doi:10.1093/brain/awl054.

    Abstract

    The apolipoprotein E {varepsilon}4 (APOE {varepsilon}4) is the main known genetic risk factor for Alzheimer's disease. Genetic assessments in combination with other diagnostic tools, such as neuroimaging, have the potential to facilitate early diagnosis. In this large-scale functional MRI (fMRI) study, we have contrasted 30 APOE {varepsilon}4 carriers (age range: 49–74 years; 19 females), of which 10 were homozygous for the {varepsilon}4 allele, and 30 non-carriers with regard to brain activity during a semantic categorization task. Test groups were closely matched for sex, age and education. Critically, both groups were cognitively intact and thus symptom-free of Alzheimer's disease. APOE {varepsilon}4 carriers showed reduced task-related responses in the left inferior parietal cortex, and bilaterally in the anterior cingulate region. A dose-related response was observed in the parietal area such that diminution was most pronounced in homozygous compared with heterozygous carriers. In addition, contrasts of processing novel versus familiar items revealed an abnormal response in the right hippocampus in the APOE {varepsilon}4 group, mainly expressed as diminished sensitivity to the relative novelty of stimuli. Collectively, these findings indicate that genetic risk translates into reduced functional brain activity, in regions pertinent to Alzheimer's disease, well before alterations can be detected at the behavioural level.
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Petersson, K. M., Gisselgard, J., Gretzer, M., & Ingvar, M. (2006). Interaction between a verbal working memory network and the medial temporal lobe. NeuroImage, 33(4), 1207-1217. doi:10.1016/j.neuroimage.2006.07.042.

    Abstract

    The irrelevant speech effect illustrates that sounds that are irrelevant to a visually presented short-term memory task still interfere with neuronal function. In the present study we explore the functional and effective connectivity of such interference. The functional connectivity analysis suggested an interaction between the level of irrelevant speech and the correlation between in particular the left superior temporal region, associated with verbal working memory, and the left medial temporal lobe. Based on this psycho-physiological interaction, and to broaden the understanding of this result, we performed a network analysis, using a simple network model for verbal working memory, to analyze its interaction with the medial temporal lobe memory system. The results showed dissociations in terms of network interactions between frontal as well as parietal and temporal areas in relation to the medial temporal lobe. The results of the present study suggest that a transition from phonological loop processing towards an engagement of episodic processing might take place during the processing of interfering irrelevant sounds. We speculate that, in response to the irrelevant sounds, this reflects a dynamic shift in processing as suggested by a closer interaction between a verbal working memory system and the medial temporal lobe memory system.
  • Piekema, C., Kessels, R. P. C., Mars, R. B., Petersson, K. M., & Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object–location associations. NeuroImage, 33(1), 374-382. doi:10.1016/j.neuroimage.2006.06.035.

    Abstract

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance. Furthermore, a recent study in hippocampally lesioned patients has shown that the hippocampus is critically involved in associating objects and their locations, even when the delay period lasts only 8 s. However, the critical feature that causes the medial temporal lobe, and in particular the hippocampus, to participate in active maintenance is still unknown. This study was designed in order to explore hippocampal involvement in active maintenance of spatial and non-spatial associations. Eighteen participants performed a delayed-match-to-sample task in which they had to maintain either object–location associations, color–number association, single colors, or single locations. Whole-brain activity was measured using event-related functional magnetic resonance imaging and analyzed using a random effects model. Right lateralized hippocampal activity was evident when participants had to maintain object–location associations, but not when they had to maintain object–color associations or single items. The present results suggest a hippocampal involvement in active maintenance when feature combinations that include spatial information have to be maintained online.
  • Reis, A., Faísca, L., Ingvar, M., & Petersson, K. M. (2006). Color makes a difference: Two-dimensional object naming in literate and illiterate subjects. Brain and Cognition, 60, 49-54. doi:10.1016/j.bandc.2005.09.012.

    Abstract

    Previous work has shown that illiterate subjects are better at naming two-dimensional representations of real objects when presented as colored photos as compared to black and white drawings. This raises the question if color or textural details selectively improve object recognition and naming in illiterate compared to literate subjects. In this study, we investigated whether the surface texture and/or color of objects is used to access stored object knowledge in illiterate subjects. A group of illiterate subjects and a matched literate control group were compared on an immediate object naming task with four conditions: color and black and white (i.e., grey-scaled) photos, as well as color and black and white (i.e., grey-scaled) drawings of common everyday objects. The results show that illiterate subjects perform significantly better when the stimuli are colored and this effect is independent of the photographic detail. In addition, there were significant differences between the literacy groups in the black and white condition for both drawings and photos. These results suggest that color object information contributes to object recognition. This effect was particularly prominent in the illiterate group
  • Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.

    Abstract

    Retrieval of recently acquired declarative memories depends on
    the hippocampus, but with time, retrieval is increasingly sustainable
    by neocortical representations alone. This process has been
    conceptualized as system-level consolidation. Using functional
    magnetic resonance imaging, we assessed over the course of three
    months how consolidation affects the neural correlates of memory
    retrieval. The duration of slow-wave sleep during a nap/rest
    period after the initial study session and before the first scan
    session on day 1 correlated positively with recognition memory
    performance for items studied before the nap and negatively with
    hippocampal activity associated with correct confident recognition.
    Over the course of the entire study, hippocampal activity for
    correct confident recognition continued to decrease, whereas activity
    in a ventral medial prefrontal region increased. These findings,
    together with data obtained in rodents, may prompt a
    revision of classical consolidation theory, incorporating a transfer
    of putative linking nodes from hippocampal to prelimbic prefrontal
    areas.

Share this page