Publications

Displaying 1 - 4 of 4
  • Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.

    Abstract

    The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language.
  • Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.

    Abstract

    Language processing involves the ability to store and integrate pieces of
    information in working memory over short periods of time. According to
    the dominant view, information is maintained through sustained, elevated
    neural activity. Other work has argued that short-term synaptic facilitation
    can serve as a substrate of memory. Here, we propose an account where
    memory is supported by intrinsic plasticity that downregulates neuronal
    firing rates. Single neuron responses are dependent on experience and we
    show through simulations that these adaptive changes in excitability pro-
    vide memory on timescales ranging from milliseconds to seconds. On this
    account, spiking activity writes information into coupled dynamic variables
    that control adaptation and move at slower timescales than the membrane
    potential. From these variables, information is continuously read back into
    the active membrane state for processing. This neuronal memory mech-
    anism does not rely on persistent activity, excitatory feedback, or synap-
    tic plasticity for storage. Instead, information is maintained in adaptive
    conductances that reduce firing rates and can be accessed directly with-
    out cued retrieval. Memory span is systematically related to both the time
    constant of adaptation and baseline levels of neuronal excitability. Inter-
    ference effects within memory arise when adaptation is long-lasting. We
    demonstrate that this mechanism is sensitive to context and serial order
    which makes it suitable for temporal integration in sequence processing
    within the language domain. We also show that it enables the binding of
    linguistic features over time within dynamic memory registers. This work
    provides a step towards a computational neurobiology of language.
  • Araújo, S., Faísca, L., Bramão, I., Reis, A., & Petersson, K. M. (2015). Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readers. Brain and Language, 141, 16-27. doi:10.1016/j.bandl.2014.11.007.

    Abstract

    This ERP study investigated the cognitive nature of the P1–N1 components during orthographic processing. We used an implicit reading task with various types of stimuli involving different amounts of sublexical or lexical orthographic processing (words, pseudohomophones, pseudowords, nonwords, and symbols), and tested average and dyslexic readers. An orthographic regularity effect (pseudowords– nonwords contrast) was observed in the average but not in the dyslexic group. This suggests an early sensitivity to the dependencies among letters in word-forms that reflect orthographic structure, while the dyslexic brain apparently fails to be appropriately sensitive to these complex features. Moreover, in the adults the N1-response may already reflect lexical access: (i) the N1 was sensitive to the familiar vs. less familiar orthographic sequence contrast; (ii) and early effects of the phonological form (words-pseudohomophones contrast) were also found. Finally, the later N320 component was attenuated in the dyslexics, suggesting suboptimal processing in later stages of phonological analysis.
  • Araújo, S., Reis, A., Petersson, K. M., & Faísca, L. (2015). Rapid automatized naming and reading performance: A meta-analysis. Journal of Educational Psychology, 107(3), 868-883. doi:10.1037/edu0000006.

    Abstract

    Evidence that rapid naming skill is associated with reading ability has become increasingly prevalent in recent years. However, there is considerable variation in the literature concerning the magnitude of this relationship. The objective of the present study was to provide a comprehensive analysis of the evidence on the relationship between rapid automatized naming (RAN) and reading performance. To this end, we conducted a meta-analysis of the correlational relationship between these 2 constructs to (a) determine the overall strength of the RAN–reading association and (b) identify variables that systematically moderate this relationship. A random-effects model analysis of data from 137 studies (857 effect sizes; 28,826 participants) indicated a moderate-to-strong relationship between RAN and reading performance (r = .43, I2 = 68.40). Further analyses revealed that RAN contributes to the 4 measures of reading (word reading, text reading, non-word reading, and reading comprehension), but higher coefficients emerged in favor of real word reading and text reading. RAN stimulus type and type of reading score were the factors with the greatest moderator effect on the magnitude of the RAN–reading relationship. The consistency of orthography and the subjects’ grade level were also found to impact this relationship, although the effect was contingent on reading outcome. It was less evident whether the subjects’ reading proficiency played a role in the relationship. Implications for future studies are discussed.

Share this page