Judith Holler

Publications

Displaying 1 - 19 of 19
  • Ghaleb, E., Rasenberg, M., Pouw, W., Toni, I., Holler, J., Özyürek, A., & Fernandez, R. (2024). Analysing cross-speaker convergence through the lens of automatically detected shared linguistic constructions. In L. K. Samuelson, S. L. Frank, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1717-1723).

    Abstract

    Conversation requires a substantial amount of coordination between dialogue participants, from managing turn taking to negotiating mutual understanding. Part of this coordination effort surfaces as the reuse of linguistic behaviour across speakers, a process often referred to as alignment. While the presence of linguistic alignment is well documented in the literature, several questions remain open, including the extent to which patterns of reuse across speakers have an impact on the emergence of labelling conventions for novel referents. In this study, we put forward a methodology for automatically detecting shared lemmatised constructions---expressions with a common lexical core used by both speakers within a dialogue---and apply it to a referential communication corpus where participants aim to identify novel objects for which no established labels exist. Our analyses uncover the usage patterns of shared constructions in interaction and reveal that features such as their frequency and the amount of different constructions used for a referent are associated with the degree of object labelling convergence the participants exhibit after social interaction. More generally, the present study shows that automatically detected shared constructions offer a useful level of analysis to investigate the dynamics of reference negotiation in dialogue.

    Additional information

    link to eScholarship
  • Ghaleb, E., Burenko, I., Rasenberg, M., Pouw, W., Uhrig, P., Holler, J., Toni, I., Ozyurek, A., & Fernandez, R. (2024). Cospeech gesture detection through multi-phase sequence labeling. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024) (pp. 4007-4015).

    Abstract

    Gestures are integral components of face-to-face communication. They unfold over time, often following predictable movement phases of preparation, stroke, and re-
    traction. Yet, the prevalent approach to automatic gesture detection treats the problem as binary classification, classifying a segment as either containing a gesture or not, thus failing to capture its inherently sequential and contextual nature. To address this, we introduce a novel framework that reframes the task as a multi-phase sequence labeling problem rather than binary classification. Our model processes sequences of skeletal movements over time windows, uses Transformer encoders to learn contextual embeddings, and leverages Conditional Random Fields to perform sequence labeling. We evaluate our proposal on a large dataset of diverse co-speech gestures in task-oriented face-to-face dialogues. The results consistently demonstrate that our method significantly outperforms strong baseline models in detecting gesture strokes. Furthermore, applying Transformer encoders to learn contextual embeddings from movement sequences substantially improves gesture unit detection. These results highlight our framework’s capacity to capture the fine-grained dynamics of co-speech gesture phases, paving the way for more nuanced and accurate gesture detection and analysis.
  • Ghaleb, E., Khaertdinov, B., Pouw, W., Rasenberg, M., Holler, J., Ozyurek, A., & Fernandez, R. (2024). Learning co-speech gesture representations in dialogue through contrastive learning: An intrinsic evaluation. In Proceedings of the 26th International Conference on Multimodal Interaction (ICMI 2024) (pp. 274-283).

    Abstract

    In face-to-face dialogues, the form-meaning relationship of co-speech gestures varies depending on contextual factors such as what the gestures refer to and the individual characteristics of speakers. These factors make co-speech gesture representation learning challenging. How can we learn meaningful gestures representations considering gestures’ variability and relationship with speech? This paper tackles this challenge by employing self-supervised contrastive learning techniques to learn gesture representations from skeletal and speech information. We propose an approach that includes both unimodal and multimodal pre-training to ground gesture representations in co-occurring speech. For training, we utilize a face-to-face dialogue dataset rich with representational iconic gestures. We conduct thorough intrinsic evaluations of the learned representations through comparison with human-annotated pairwise gesture similarity. Moreover, we perform a diagnostic probing analysis to assess the possibility of recovering interpretable gesture features from the learned representations. Our results show a significant positive correlation with human-annotated gesture similarity and reveal that the similarity between the learned representations is consistent with well-motivated patterns related to the dynamics of dialogue interaction. Moreover, our findings demonstrate that several features concerning the form of gestures can be recovered from the latent representations. Overall, this study shows that multimodal contrastive learning is a promising approach for learning gesture representations, which opens the door to using such representations in larger-scale gesture analysis studies.
  • Kendrick, K. H., & Holler, J. (2024). Conversation. In M. C. Frank, & A. Majid (Eds.), Open Encyclopedia of Cognitive Science. Cambridge: MIT Press. doi:10.21428/e2759450.3c00b537.
  • Rasing, N. B., Van de Geest-Buit, W., Chan, O. Y. A., Mul, K., Lanser, A., Erasmus, C. E., Groothuis, J. T., Holler, J., Ingels, K. J. A. O., Post, B., Siemann, I., & Voermans, N. C. (2024). Psychosocial functioning in patients with altered facial expression: A scoping review in five neurological diseases. Disability and Rehabilitation, 46(17), 3772-3791. doi:10.1080/09638288.2023.2259310.

    Abstract

    Purpose

    To perform a scoping review to investigate the psychosocial impact of having an altered facial expression in five neurological diseases.
    Methods

    A systematic literature search was performed. Studies were on Bell’s palsy, facioscapulohumeral muscular dystrophy (FSHD), Moebius syndrome, myotonic dystrophy type 1, or Parkinson’s disease patients; had a focus on altered facial expression; and had any form of psychosocial outcome measure. Data extraction focused on psychosocial outcomes.
    Results

    Bell’s palsy, myotonic dystrophy type 1, and Parkinson’s disease patients more often experienced some degree of psychosocial distress than healthy controls. In FSHD, facial weakness negatively influenced communication and was experienced as a burden. The psychosocial distress applied especially to women (Bell’s palsy and Parkinson’s disease), and patients with more severely altered facial expression (Bell’s palsy), but not for Moebius syndrome patients. Furthermore, Parkinson’s disease patients with more pronounced hypomimia were perceived more negatively by observers. Various strategies were reported to compensate for altered facial expression.
    Conclusions

    This review showed that patients with altered facial expression in four of five included neurological diseases had reduced psychosocial functioning. Future research recommendations include studies on observers’ judgements of patients during social interactions and on the effectiveness of compensation strategies in enhancing psychosocial functioning.
    Implications for rehabilitation

    Negative effects of altered facial expression on psychosocial functioning are common and more abundant in women and in more severely affected patients with various neurological disorders.

    Health care professionals should be alert to psychosocial distress in patients with altered facial expression.

    Learning of compensatory strategies could be a beneficial therapy for patients with psychosocial distress due to an altered facial expression.
  • Ter Bekke, M., Drijvers, L., & Holler, J. (2024). Hand gestures have predictive potential during conversation: An investigation of the timing of gestures in relation to speech. Cognitive Science, 48(1): e13407. doi:10.1111/cogs.13407.

    Abstract

    During face-to-face conversation, transitions between speaker turns are incredibly fast. These fast turn exchanges seem to involve next speakers predicting upcoming semantic information, such that next turn planning can begin before a current turn is complete. Given that face-to-face conversation also involves the use of communicative bodily signals, an important question is how bodily signals such as co-speech hand gestures play into these processes of prediction and fast responding. In this corpus study, we found that hand gestures that depict or refer to semantic information started before the corresponding information in speech, which held both for the onset of the gesture as a whole, as well as the onset of the stroke (the most meaningful part of the gesture). This early timing potentially allows listeners to use the gestural information to predict the corresponding semantic information to be conveyed in speech. Moreover, we provided further evidence that questions with gestures got faster responses than questions without gestures. However, we found no evidence for the idea that how much a gesture precedes its lexical affiliate (i.e., its predictive potential) relates to how fast responses were given. The findings presented here highlight the importance of the temporal relation between speech and gesture and help to illuminate the potential mechanisms underpinning multimodal language processing during face-to-face conversation.
  • Ter Bekke, M., Drijvers, L., & Holler, J. (2024). Gestures speed up responses to questions. Language, Cognition and Neuroscience, 39(4), 423-430. doi:10.1080/23273798.2024.2314021.

    Abstract

    Most language use occurs in face-to-face conversation, which involves rapid turn-taking. Seeing communicative bodily signals in addition to hearing speech may facilitate such fast responding. We tested whether this holds for co-speech hand gestures by investigating whether these gestures speed up button press responses to questions. Sixty native speakers of Dutch viewed videos in which an actress asked yes/no-questions, either with or without a corresponding iconic hand gesture. Participants answered the questions as quickly and accurately as possible via button press. Gestures did not impact response accuracy, but crucially, gestures sped up responses, suggesting that response planning may be finished earlier when gestures are seen. How much gestures sped up responses was not related to their timing in the question or their timing with respect to the corresponding information in speech. Overall, these results are in line with the idea that multimodality may facilitate fast responding during face-to-face conversation.
  • Ter Bekke, M., Levinson, S. C., Van Otterdijk, L., Kühn, M., & Holler, J. (2024). Visual bodily signals and conversational context benefit the anticipation of turn ends. Cognition, 248: 105806. doi:10.1016/j.cognition.2024.105806.

    Abstract

    The typical pattern of alternating turns in conversation seems trivial at first sight. But a closer look quickly reveals the cognitive challenges involved, with much of it resulting from the fast-paced nature of conversation. One core ingredient to turn coordination is the anticipation of upcoming turn ends so as to be able to ready oneself for providing the next contribution. Across two experiments, we investigated two variables inherent to face-to-face conversation, the presence of visual bodily signals and preceding discourse context, in terms of their contribution to turn end anticipation. In a reaction time paradigm, participants anticipated conversational turn ends better when seeing the speaker and their visual bodily signals than when they did not, especially so for longer turns. Likewise, participants were better able to anticipate turn ends when they had access to the preceding discourse context than when they did not, and especially so for longer turns. Critically, the two variables did not interact, showing that visual bodily signals retain their influence even in the context of preceding discourse. In a pre-registered follow-up experiment, we manipulated the visibility of the speaker's head, eyes and upper body (i.e. torso + arms). Participants were better able to anticipate turn ends when the speaker's upper body was visible, suggesting a role for manual gestures in turn end anticipation. Together, these findings show that seeing the speaker during conversation may critically facilitate turn coordination in interaction.
  • Trujillo, J. P., & Holler, J. (2024). Conversational facial signals combine into compositional meanings that change the interpretation of speaker intentions. Scientific Reports, 14: 2286. doi:10.1038/s41598-024-52589-0.

    Abstract

    Human language is extremely versatile, combining a limited set of signals in an unlimited number of ways. However, it is unknown whether conversational visual signals feed into the composite utterances with which speakers communicate their intentions. We assessed whether different combinations of visual signals lead to different intent interpretations of the same spoken utterance. Participants viewed a virtual avatar uttering spoken questions while producing single visual signals (i.e., head turn, head tilt, eyebrow raise) or combinations of these signals. After each video, participants classified the communicative intention behind the question. We found that composite utterances combining several visual signals conveyed different meaning compared to utterances accompanied by the single visual signals. However, responses to combinations of signals were more similar to the responses to related, rather than unrelated, individual signals, indicating a consistent influence of the individual visual signals on the whole. This study therefore provides first evidence for compositional, non-additive (i.e., Gestalt-like) perception of multimodal language.

    Additional information

    41598_2024_52589_MOESM1_ESM.docx
  • Trujillo, J. P., & Holler, J. (2024). Information distribution patterns in naturalistic dialogue differ across languages. Psychonomic Bulletin & Review, 31, 1723-1734. doi:10.3758/s13423-024-02452-0.

    Abstract

    The natural ecology of language is conversation, with individuals taking turns speaking to communicate in a back-and-forth fashion. Language in this context involves strings of words that a listener must process while simultaneously planning their own next utterance. It would thus be highly advantageous if language users distributed information within an utterance in a way that may facilitate this processing–planning dynamic. While some studies have investigated how information is distributed at the level of single words or clauses, or in written language, little is known about how information is distributed within spoken utterances produced during naturalistic conversation. It also is not known how information distribution patterns of spoken utterances may differ across languages. We used a set of matched corpora (CallHome) containing 898 telephone conversations conducted in six different languages (Arabic, English, German, Japanese, Mandarin, and Spanish), analyzing more than 58,000 utterances, to assess whether there is evidence of distinct patterns of information distributions at the utterance level, and whether these patterns are similar or differed across the languages. We found that English, Spanish, and Mandarin typically show a back-loaded distribution, with higher information (i.e., surprisal) in the last half of utterances compared with the first half, while Arabic, German, and Japanese showed front-loaded distributions, with higher information in the first half compared with the last half. Additional analyses suggest that these patterns may be related to word order and rate of noun and verb usage. We additionally found that back-loaded languages have longer turn transition times (i.e.,time between speaker turns)

    Additional information

    Data availability
  • Holler, J., Kendrick, K. H., Casillas, M., & Levinson, S. C. (Eds.). (2016). Turn-Taking in Human Communicative Interaction. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-825-2.

    Abstract

    The core use of language is in face-to-face conversation. This is characterized by rapid turn-taking. This turn-taking poses a number central puzzles for the psychology of language.

    Consider, for example, that in large corpora the gap between turns is on the order of 100 to 300 ms, but the latencies involved in language production require minimally between 600ms (for a single word) or 1500 ms (for as simple sentence). This implies that participants in conversation are predicting the ends of the incoming turn and preparing in advance. But how is this done? What aspects of this prediction are done when? What happens when the prediction is wrong? What stops participants coming in too early? If the system is running on prediction, why is there consistently a mode of 100 to 300 ms in response time?

    The timing puzzle raises further puzzles: it seems that comprehension must run parallel with the preparation for production, but it has been presumed that there are strict cognitive limitations on more than one central process running at a time. How is this bottleneck overcome? Far from being 'easy' as some psychologists have suggested, conversation may be one of the most demanding cognitive tasks in our everyday lives. Further questions naturally arise: how do children learn to master this demanding task, and what is the developmental trajectory in this domain?

    Research shows that aspects of turn-taking such as its timing are remarkably stable across languages and cultures, but the word order of languages varies enormously. How then does prediction of the incoming turn work when the verb (often the informational nugget in a clause) is at the end? Conversely, how can production work fast enough in languages that have the verb at the beginning, thereby requiring early planning of the whole clause? What happens when one changes modality, as in sign languages -- with the loss of channel constraints is turn-taking much freer? And what about face-to-face communication amongst hearing individuals -- do gestures, gaze, and other body behaviors facilitate turn-taking? One can also ask the phylogenetic question: how did such a system evolve? There seem to be parallels (analogies) in duetting bird species, and in a variety of monkey species, but there is little evidence of anything like this among the great apes.

    All this constitutes a neglected set of problems at the heart of the psychology of language and of the language sciences. This research topic welcomes contributions from right across the board, for example from psycholinguists, developmental psychologists, students of dialogue and conversation analysis, linguists interested in the use of language, phoneticians, corpus analysts and comparative ethologists or psychologists. We welcome contributions of all sorts, for example original research papers, opinion pieces, and reviews of work in subfields that may not be fully understood in other subfields.
  • Humphries, S., Holler, J., Crawford, T. J., Herrera, E., & Poliakoff, E. (2016). A third-person perspective on co-speech action gestures in Parkinson’s disease. Cortex, 78, 44-54. doi:10.1016/j.cortex.2016.02.009.

    Abstract

    A combination of impaired motor and cognitive function in Parkinson’s disease (PD) can impact on language and communication, with patients exhibiting a particular difficulty processing action verbs. Co-speech gestures embody a link between action and language and contribute significantly to communication in healthy people. Here, we investigated how co-speech gestures depicting actions are affected in PD, in particular with respect to the visual perspective—or the viewpoint – they depict. Gestures are closely related to mental imagery and motor simulations, but people with PD may be impaired in the way they simulate actions from a first-person perspective and may compensate for this by relying more on third-person visual features. We analysed the action-depicting gestures produced by mild-moderate PD patients and age-matched controls on an action description task and examined the relationship between gesture viewpoint, action naming, and performance on an action observation task (weight judgement). Healthy controls produced the majority of their action gestures from a first-person perspective, whereas PD patients produced a greater proportion of gestures produced from a third-person perspective. We propose that this reflects a compensatory reliance on third-person visual features in the simulation of actions in PD. Performance was also impaired in action naming and weight judgement, although this was unrelated to gesture viewpoint. Our findings provide a more comprehensive understanding of how action-language impairments in PD impact on action communication, on the cognitive underpinnings of this impairment, as well as elucidating the role of action simulation in gesture production
  • Rowbotham, S. J., Holler, J., Wearden, A., & Lloyd, D. M. (2016). I see how you feel: Recipients obtain additional information from speakers’ gestures about pain. Patient Education and Counseling, 99(8), 1333-1342. doi:10.1016/j.pec.2016.03.007.

    Abstract

    Objective

    Despite the need for effective pain communication, pain is difficult to verbalise. Co-speech gestures frequently add information about pain that is not contained in the accompanying speech. We explored whether recipients can obtain additional information from gestures about the pain that is being described.
    Methods

    Participants (n = 135) viewed clips of pain descriptions under one of four conditions: 1) Speech Only; 2) Speech and Gesture; 3) Speech, Gesture and Face; and 4) Speech, Gesture and Face plus Instruction (short presentation explaining the pain information that gestures can depict). Participants provided free-text descriptions of the pain that had been described. Responses were scored for the amount of information obtained from the original clips.
    Findings

    Participants in the Instruction condition obtained the most information, while those in the Speech Only condition obtained the least (all comparisons p<.001).
    Conclusions

    Gestures produced during pain descriptions provide additional information about pain that recipients are able to pick up without detriment to their uptake of spoken information.
    Practice implications

    Healthcare professionals may benefit from instruction in gestures to enhance uptake of information about patients’ pain experiences.
  • Holler, J. (2014). Experimental methods in co-speech gesture research. In C. Mueller, A. Cienki, D. McNeill, & E. Fricke (Eds.), Body -language – communication: An international handbook on multimodality in human interaction. Volume 1 (pp. 837-856). Berlin: De Gruyter.
  • Holler, J., Schubotz, L., Kelly, S., Hagoort, P., Schuetze, M., & Ozyurek, A. (2014). Social eye gaze modulates processing of speech and co-speech gesture. Cognition, 133, 692-697. doi:10.1016/j.cognition.2014.08.008.

    Abstract

    In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from different modalities during comprehension, and how perceived communicative intentions, often signaled through visual signals, influence this process. We explored this question by simulating a multi-party communication context in which a speaker alternated her gaze between two recipients. Participants viewed speech-only or speech + gesture object-related messages when being addressed (direct gaze) or unaddressed (gaze averted to other participant). They were then asked to choose which of two object images matched the speaker’s preceding message. Unaddressed recipients responded significantly more slowly than addressees for speech-only utterances. However, perceiving the same speech accompanied by gestures sped unaddressed recipients up to a level identical to that of addressees. That is, when unaddressed recipients’ speech processing suffers, gestures can enhance the comprehension of a speaker’s message. We discuss our findings with respect to two hypotheses attempting to account for how social eye gaze may modulate multi-modal language comprehension.
  • Levinson, S. C., & Holler, J. (2014). The origin of human multi-modal communication. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 369(1651): 2013030. doi:10.1098/rstb.2013.0302.

    Abstract

    One reason for the apparent gulf between animal and human communication systems is that the focus has been on the presence or the absence of language as a complex expressive system built on speech. But language normally occurs embedded within an interactional exchange of multi-modal signals. If this larger perspective takes central focus, then it becomes apparent that human communication has a layered structure, where the layers may be plausibly assigned different phylogenetic and evolutionary origins—especially in the light of recent thoughts on the emergence of voluntary breathing and spoken language. This perspective helps us to appreciate the different roles that the different modalities play in human communication, as well as how they function as one integrated system despite their different roles and origins. It also offers possibilities for reconciling the ‘gesture-first hypothesis’ with that of gesture and speech having evolved together, hand in hand—or hand in mouth, rather—as one system.
  • Rowbotham, S., Wardy, A. J., Lloyd, D. M., Wearden, A., & Holler, J. (2014). Increased pain intensity is associated with greater verbal communication difficulty and increased production of speech and co-speech gestures. PLoS One, 9(10): e110779. doi:10.1371/journal.pone.0110779.

    Abstract

    Effective pain communication is essential if adequate treatment and support are to be provided. Pain communication is often multimodal, with sufferers utilising speech, nonverbal behaviours (such as facial expressions), and co-speech gestures (bodily movements, primarily of the hands and arms that accompany speech and can convey semantic information) to communicate their experience. Research suggests that the production of nonverbal pain behaviours is positively associated with pain intensity, but it is not known whether this is also the case for speech and co-speech gestures. The present study explored whether increased pain intensity is associated with greater speech and gesture production during face-to-face communication about acute, experimental pain. Participants (N = 26) were exposed to experimentally elicited pressure pain to the fingernail bed at high and low intensities and took part in video-recorded semi-structured interviews. Despite rating more intense pain as more difficult to communicate (t(25) = 2.21, p = .037), participants produced significantly longer verbal pain descriptions and more co-speech gestures in the high intensity pain condition (Words: t(25) = 3.57, p = .001; Gestures: t(25) = 3.66, p = .001). This suggests that spoken and gestural communication about pain is enhanced when pain is more intense. Thus, in addition to conveying detailed semantic information about pain, speech and co-speech gestures may provide a cue to pain intensity, with implications for the treatment and support received by pain sufferers. Future work should consider whether these findings are applicable within the context of clinical interactions about pain.
  • Rowbotham, S., Holler, J., Lloyd, D., & Wearden, A. (2014). Handling pain: The semantic interplay of speech and co-speech hand gestures in the description of pain sensations. Speech Communication, 57, 244-256. doi:10.1016/j.specom.2013.04.002.

    Abstract

    Pain is a private and subjective experience about which effective communication is vital, particularly in medical settings. Speakers often represent information about pain sensation in both speech and co-speech hand gestures simultaneously, but it is not known whether gestures merely replicate spoken information or complement it in some way. We examined the representational contribution
    of gestures in a range of consecutive analyses. Firstly, we found that 78% of speech units containing pain sensation were accompanied by gestures, with 53% of these gestures representing pain sensation. Secondly, in 43% of these instances, gestures represented pain sensation information that was not contained in speech, contributing additional, complementary information to the pain sensation message.
    Finally, when applying a specificity analysis, we found that in contrast with research in different domains of talk, gestures did not make the pain sensation information in speech more specific. Rather, they complemented the verbal pain message by representing different
    aspects of pain sensation, contributing to a fuller representation of pain sensation than speech alone. These findings highlight the importance of gestures in communicating about pain sensation and suggest that this modality provides additional information to supplement and clarify the often ambiguous verbal pain message

    Files private

    Request files
  • Theakston, A., Coates, A., & Holler, J. (2014). Handling agents and patients: Representational cospeech gestures help children comprehend complex syntactic constructions. Developmental Psychology, 50(7), 1973-1984. doi:10.1037/a0036694.

    Abstract

    Gesture is an important precursor of children’s early language development, for example, in the transition to multiword speech and as a predictor of later language abilities. However, it is unclear whether gestural input can influence children’s comprehension of complex grammatical constructions. In Study 1, 3- (M = 3 years 5 months) and 4-year-old (M = 4 years 6 months) children witnessed 2-participant actions described using the infrequent object-cleft-construction (OCC; It was the dog that the cat chased). Half saw an experimenter accompanying her descriptions with gestures representing the 2 participants and indicating the direction of action; the remaining children did not witness gesture. Children who witnessed gestures showed better comprehension of the OCC than those who did not witness gestures, both in and beyond the immediate physical context, but this benefit was restricted to the oldest 4-year-olds. In Study 2, a further group of older 4-year-old children (M = 4 years 7 months) witnessed the same 2-participant actions described by an experimenter and accompanied by gestures, but the gesture represented only the 2 participants and not the direction of the action. Again, a benefit of gesture was observed on subsequent comprehension of the OCC. We interpret these findings as demonstrating that representational cospeech gestures can help children comprehend complex linguistic structures by highlighting the roles played by the participants in the event.

    Files private

    Request files

Share this page