Displaying 1 - 3 of 3
-
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. doi:10.1016/j.cognition.2017.05.008.
Abstract
Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions -
Chang, F., Bauman, M., Pappert, S., & Fitz, H. (2015). Do lemmas speak German?: A verb position effect in German structural priming. Cognitive Science, 39(5), 1113-1130. doi:10.1111/cogs.12184.
Abstract
Lexicalized theories of syntax often assume that verb-structure regularities are mediated by lemmas, which abstract over variation in verb tense and aspect. German syntax seems to challenge this assumption, because verb position depends on tense and aspect. To examine how German speakers link these elements, a structural priming study was performed which varied syntactic structure, verb position (encoded by tense and aspect), and verb overlap. Abstract structural priming was found, both within and across verb position, but priming was larger when the verb position was the same between prime and target. Priming was boosted by verb overlap, but there was no interaction with verb position. The results can be explained by a lemma model where tense and aspect are linked to structural choices in German. Since the architecture of this lemma model is not consistent with results from English, a connectionist model was developed which could explain the cross-linguistic variation in the production system. Together, these findings support the view that language learning plays an important role in determining the nature of structural priming in different languages
Share this page