Displaying 1 - 8 of 8
-
Casillas, M., Brown, P., & Levinson, S. C. (2021). Early language experience in a Papuan community. Journal of Child Language, 48(4), 792-814. doi:10.1017/S0305000920000549.
Abstract
The rate at which young children are directly spoken to varies due to many factors, including (a) caregiver ideas about children as conversational partners and (b) the organization of everyday life. Prior work suggests cross-cultural variation in rates of child-directed speech is due to the former factor, but has been fraught with confounds in comparing postindustrial and subsistence farming communities. We investigate the daylong language environments of children (0;0–3;0) on Rossel Island, Papua New Guinea, a small-scale traditional community where prior ethnographic study demonstrated contingency-seeking child interaction styles. In fact, children were infrequently directly addressed and linguistic input rate was primarily affected by situational factors, though children’s vocalization maturity showed no developmental delay. We compare the input characteristics between this community and a Tseltal Mayan one in which near-parallel methods produced comparable results, then briefly discuss the models and mechanisms for learning best supported by our findings. -
Cychosz, M., Cristia, A., Bergelson, E., Casillas, M., Baudet, G., Warlaumont, A. S., Scaff, C., Yankowitz, L., & Seidl, A. (2021). Vocal development in a large‐scale crosslinguistic corpus. Developmental Science, 24(5): e13090. doi:10.1111/desc.13090.
Abstract
This study evaluates whether early vocalizations develop in similar ways in children across diverse cultural contexts. We analyze data from daylong audio recordings of 49 children (1–36 months) from five different language/cultural backgrounds. Citizen scientists annotated these recordings to determine if child vocalizations contained canonical transitions or not (e.g., “ba” vs. “ee”). Results revealed that the proportion of clips reported to contain canonical transitions increased with age. Furthermore, this proportion exceeded 0.15 by around 7 months, replicating and extending previous findings on canonical vocalization development but using data from the natural environments of a culturally and linguistically diverse sample. This work explores how crowdsourcing can be used to annotate corpora, helping establish developmental milestones relevant to multiple languages and cultures. Lower inter‐annotator reliability on the crowdsourcing platform, relative to more traditional in‐lab expert annotators, means that a larger number of unique annotators and/or annotations are required, and that crowdsourcing may not be a suitable method for more fine‐grained annotation decisions. Audio clips used for this project are compiled into a large‐scale infant vocalization corpus that is available for other researchers to use in future work. -
Frost, R. L. A., & Casillas, M. (2021). Investigating statistical learning of nonadjacent dependencies: Running statistical learning tasks in non-WEIRD populations. In SAGE Research Methods Cases. doi:10.4135/9781529759181.
Abstract
Language acquisition is complex. However, one thing that has been suggested to help learning is the way that information is distributed throughout language; co-occurrences among particular items (e.g., syllables and words) have been shown to help learners discover the words that a language contains and figure out how those words are used. Humans’ ability to draw on this information—“statistical learning”—has been demonstrated across a broad range of studies. However, evidence from non-WEIRD (Western, Educated, Industrialized, Rich, and Democratic) societies is critically lacking, which limits theorizing on the universality of this skill. We extended work on statistical language learning to a new, non-WEIRD linguistic population: speakers of Yélî Dnye, who live on a remote island off mainland Papua New Guinea (Rossel Island). We performed a replication of an existing statistical learning study, training adults on an artificial language with statistically defined words, then examining what they had learnt using a two-alternative forced-choice test. Crucially, we implemented several key amendments to the original study to ensure the replication was suitable for remote field-site testing with speakers of Yélî Dnye. We made critical changes to the stimuli and materials (to test speakers of Yélî Dnye, rather than English), the instructions (we re-worked these significantly, and added practice tasks to optimize participants’ understanding), and the study format (shifting from a lab-based to a portable tablet-based setup). We discuss the requirement for acute sensitivity to linguistic, cultural, and environmental factors when adapting studies to test new populations.
-
Räsänen, O., Seshadri, S., Lavechin, M., Cristia, A., & Casillas, M. (2021). ALICE: An open-source tool for automatic measurement of phoneme, syllable, and word counts from child-centered daylong recordings. Behavior Research Methods, 53, 818-835. doi:10.3758/s13428-020-01460-x.
Abstract
Recordings captured by wearable microphones are a standard method for investigating young children’s language environments. A key measure to quantify from such data is the amount of speech present in children’s home environments. To this end, the LENA recorder and software—a popular system for measuring linguistic input—estimates the number of adult words that children may hear over the course of a recording. However, word count estimation is challenging to do in a language-independent manner; the relationship between observable acoustic patterns and language-specific lexical entities is far from uniform across human languages. In this paper, we ask whether some alternative linguistic units, namely phone(me)s or syllables, could be measured instead of, or in parallel with, words in order to achieve improved cross-linguistic applicability and comparability of an automated system for measuring child language input. We discuss the advantages and disadvantages of measuring different units from theoretical and technical points of view. We also investigate the practical applicability of measuring such units using a novel system called Automatic LInguistic unit Count Estimator (ALICE) together with audio from seven child-centered daylong audio corpora from diverse cultural and linguistic environments. We show that language-independent measurement of phoneme counts is somewhat more accurate than syllables or words, but all three are highly correlated with human annotations on the same data. We share an open-source implementation of ALICE for use by the language research community, allowing automatic phoneme, syllable, and word count estimation from child-centered audio recordings. -
Casillas, M., Brown, P., & Levinson, S. C. (2020). Early language experience in a Tseltal Mayan village. Child Development, 91(5), 1819-1835. doi:10.1111/cdev.13349.
Abstract
Daylong at-home audio recordings from 10 Tseltal Mayan children (0;2–3;0; Southern Mexico) were analyzed for how often children engaged in verbal interaction with others and whether their speech environment changed with age, time of day, household size, and number of speakers present. Children were infrequently directly spoken to, with most directed speech coming from adults, and no increase with age. Most directed speech came in the mornings, and interactional peaks contained nearly four times the baseline rate of directed speech. Coarse indicators of children's language development (babbling, first words, first word combinations) suggest that Tseltal children manage to extract the linguistic information they need despite minimal directed speech. Multiple proposals for how they might do so are discussed.Additional information
Tseltal-CLE-SuppMat.pdf -
Casillas, M., & Hilbrink, E. (2020). Communicative act development. In K. P. Schneider, & E. Ifantidou (
Eds. ), Developmental and Clinical Pragmatics (pp. 61-88). Berlin: De Gruyter Mouton.Abstract
How do children learn to map linguistic forms onto their intended meanings? This chapter begins with an introduction to some theoretical and analytical tools used to study communicative acts. It then turns to communicative act development in spoken and signed language acquisition, including both the early scaffolding and production of communicative acts (both non-verbal and verbal) as well as their later links to linguistic development and Theory of Mind. The chapter wraps up by linking research on communicative act development to the acquisition of conversational skills, cross-linguistic and individual differences in communicative experience during development, and human evolution. Along the way, it also poses a few open questions for future research in this domain. -
Cychosz, M., Romeo, R., Soderstrom, M., Scaff, C., Ganek, H., Cristia, A., Casillas, M., De Barbaro, K., Bang, J. Y., & Weisleder, A. (2020). Longform recordings of everyday life: Ethics for best practices. Behavior Research Methods, 52, 1951-1969. doi:10.3758/s13428-020-01365-9.
Abstract
Recent advances in large-scale data storage and processing offer unprecedented opportunities for behavioral scientists to collect and analyze naturalistic data, including from under-represented groups. Audio data, particularly real-world audio recordings, are of particular interest to behavioral scientists because they provide high-fidelity access to subtle aspects of daily life and social interactions. However, these methodological advances pose novel risks to research participants and communities. In this article, we outline the benefits and challenges associated with collecting, analyzing, and sharing multi-hour audio recording data. Guided by the principles of autonomy, privacy, beneficence, and justice, we propose a set of ethical guidelines for the use of longform audio recordings in behavioral research. This article is also accompanied by an Open Science Framework Ethics Repository that includes informed consent resources such as frequent participant concerns and sample consent forms. -
MacDonald, K., Räsänen, O., Casillas, M., & Warlaumont, A. S. (2020). Measuring prosodic predictability in children’s home language environments. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (
Eds. ), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 695-701). Montreal, QB: Cognitive Science Society.Abstract
Children learn language from the speech in their home environment. Recent work shows that more infant-directed speech
(IDS) leads to stronger lexical development. But what makes IDS a particularly useful learning signal? Here, we expand on an attention-based account first proposed by Räsänen et al. (2018): that prosodic modifications make IDS less predictable, and thus more interesting. First, we reproduce the critical finding from Räsänen et al.: that lab-recorded IDS pitch is less predictable compared to adult-directed speech (ADS). Next, we show that this result generalizes to the home language environment, finding that IDS in daylong recordings is also less predictable than ADS but that this pattern is much less robust than for IDS recorded in the lab. These results link experimental work on attention and prosodic modifications of IDS to real-world language-learning environments, highlighting some challenges of scaling up analyses of IDS to larger datasets that better capture children’s actual input.
Share this page