Clyde Francks

Publications

Displaying 1 - 12 of 12
  • Brucato, N., Guadalupe, T., Franke, B., Fisher, S. E., & Francks, C. (2015). A schizophrenia-associated HLA locus affects thalamus volume and asymmetry. Brain, Behavior, and Immunity, 46, 311-318. doi:10.1016/j.bbi.2015.02.021.

    Abstract

    Genes of the Major Histocompatibility Complex (MHC) have recently been shown to have neuronal functions in the thalamus and hippocampus. Common genetic variants in the Human Leukocyte Antigens (HLA) region, human homologue of the MHC locus, are associated with small effects on susceptibility to schizophrenia, while volumetric changes of the thalamus and hippocampus have also been linked to schizophrenia. We therefore investigated whether common variants of the HLA would affect volumetric variation of the thalamus and hippocampus. We analyzed thalamus and hippocampus volumes, as measured using structural magnetic resonance imaging, in 1.265 healthy participants. These participants had also been genotyped using genome-wide single nucleotide polymorphism (SNP) arrays. We imputed genotypes for single nucleotide polymorphisms at high density across the HLA locus, as well as HLA allotypes and HLA amino acids, by use of a reference population dataset that was specifically targeted to the HLA region. We detected a significant association of the SNP rs17194174 with thalamus volume (nominal P=0.0000017, corrected P=0.0039), as well as additional SNPs within the same region of linkage disequilibrium. This effect was largely lateralized to the left thalamus and is localized within a genomic region previously associated with schizophrenia. The associated SNPs are also clustered within a potential regulatory element, and a region of linkage disequilibrium that spans genes expressed in the thalamus, including HLA-A. Our data indicate that genetic variation within the HLA region influences the volume and asymmetry of the human thalamus. The molecular mechanisms underlying this association may relate to HLA influences on susceptibility to schizophrenia
  • Ceroni, F., Simpson, N. H., Francks, C., Baird, G., Conti-Ramsden, G., Clark, A., Bolton, P. F., Hennessy, E. R., Donnelly, P., Bentley, D. R., Martin, H., IMGSAC, SLI Consortium, WGS500 Consortium, Parr, J., Pagnamenta, A. T., Maestrini, E., Bacchelli, E., Fisher, S. E., & Newbury, D. F. (2015). Reply to Pembrey et al: ‘ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis’. European Journal of Human Genetics, 23, 1113-1115. doi:10.1038/ejhg.2014.275.
  • Francks, C. (2015). Exploring human brain lateralization with molecular genetics and genomics. Annals of the New York Academy of Sciences, 1359, 1-13. doi:10.1111/nyas.12770.

    Abstract

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic–developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions.
  • Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., Hagoort, P., Fernandez, G., Buitelaar, J., van Bokhoven, H., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 41-55. doi:10.1016/j.cortex.2014.07.015.

    Abstract

    The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale, that overlaps Wernicke’s classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the planum temporale to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the Freesurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan meta-analysis of planum temporale asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the ´steroid hormone receptor activity´ and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the planum temporale in language cognition.
  • Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., Aribisala, B. S., Armstrong, N. J., Bernard, M., Bohlken, M. M., Boks, M. P., Bralten, J., Brown, A. A., Chakravarty, M. M., Chen, Q., Ching, C. R. K. and 267 moreHibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., Aribisala, B. S., Armstrong, N. J., Bernard, M., Bohlken, M. M., Boks, M. P., Bralten, J., Brown, A. A., Chakravarty, M. M., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., den Braber, A., Giddaluru, S., Goldman, A. L., Grimm, O., Guadalupe, T., Hass, J., Woldehawariat, G., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Kim, S., Klein, M., Kraemer, B., Lee, P. H., Olde Loohuis, L. M., Luciano, M., Macare, C., Mather, K. A., Mattheisen, M., Milaneschi, Y., Nho, K., Papmeyer, M., Ramasamy, A., Risacher, S. L., Roiz-Santiañez, R., Rose, E. J., Salami, A., Sämann, P. G., Schmaal, L., Schork, A. J., Shin, J., Strike, L. T., Teumer, A., Van Donkelaar, M. M. J., Van Eijk, K. R., Walters, R. K., Westlye, L. T., Whelan, C. D., Winkler, A. M., Zwiers, M. P., Alhusaini, S., Athanasiu, L., Ehrlich, S., Hakobjan, M. M. H., Hartberg, C. B., Haukvik, U. K., Heister, A. J. G. A. M., Hoehn, D., Kasperaviciute, D., Liewald, D. C. M., Lopez, L. M., Makkinje, R. R. R., Matarin, M., Naber, M. A. M., McKay, D. R., Needham, M., Nugent, A. C., Pütz, B., Royle, N. A., Shen, L., Sprooten, E., Trabzuni, D., Van der Marel, S. S. L., Van Hulzen, K. J. E., Walton, E., Wolf, C., Almasy, L., Ames, D., Arepalli, S., Assareh, A. A., Bastin, M. E., Brodaty, H., Bulayeva, K. B., Carless, M. A., Cichon, S., Corvin, A., Curran, J. E., Czisch, M., De Zubicaray, G. I., Dillman, A., Duggirala, R., Dyer, T. D., Erk, S., Fedko, I. O., Ferrucci, L., Foroud, T. M., Fox, P. T., Fukunaga, M., Gibbs, J. R., Göring, H. H. H., Green, R. C., Guelfi, S., Hansell, N. K., Hartman, C. A., Hegenscheid, K., Heinz, A., Hernandez, D. G., Heslenfeld, D. J., Hoekstra, P. J., Holsboer, F., Homuth, G., Hottenga, J.-J., Ikeda, M., Jack, C. R., Jenkinson, M., Johnson, R., Kanai, R., Keil, M., Kent, J. W., Kochunov, P., Kwok, J. B., Lawrie, S. M., Liu, X., Longo, D. L., McMahon, K. L., Meisenzahl, E., Melle, I., Mohnke, S., Montgomery, G. W., Mostert, J. C., Mühleisen, T. W., Nalls, M. A., Nichols, T. E., Nilsson, L. G., Nöthen, M. M., Ohi, K., Olvera, R. L., Perez-Iglesias, R., Pike, G. B., Potkin, S. G., Reinvang, I., Reppermund, S., Rietschel, M., Romanczuk-Seiferth, N., Rosen, G. D., Rujescu, D., Schnell, K., Schofield, P. R., Smith, C., Steen, V. M., Sussmann, J. E., Thalamuthu, A., Toga, A. W., Traynor, B. J., Troncoso, J., Turner, J. A., Valdes Hernández, M. C., van Ent, D. ’., Van der Brug, M., Van der Wee, N. J. A., Van Tol, M.-J., Veltman, D. J., Wassink, T. H., Westman, E., Zielke, R. H., Zonderman, A. B., Ashbrook, D. G., Hager, R., Lu, L., McMahon, F. J., Morris, D. W., Williams, R. W., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Cahn, W., Calhoun, V. D., Cavalleri, G. L., Crespo-Facorro, B., Dale, A. M., Davies, G. E., Delanty, N., Depondt, C., Djurovic, S., Drevets, W. C., Espeseth, T., Gollub, R. L., Ho, B.-C., Hoffmann, W., Hosten, N., Kahn, R. S., Le Hellard, S., Meyer-Lindenberg, A., Müller-Myhsok, B., Nauck, M., Nyberg, L., Pandolfo, M., Penninx, B. W. J. H., Roffman, J. L., Sisodiya, S. M., Smoller, J. W., Van Bokhoven, H., Van Haren, N. E. M., Völzke, H., Walter, H., Weiner, M. W., Wen, W., White, T., Agartz, I., Andreassen, O. A., Blangero, J., Boomsma, D. I., Brouwer, R. M., Cannon, D. M., Cookson, M. R., De Geus, E. J. C., Deary, I. J., Donohoe, G., Fernández, G., Fisher, S. E., Francks, C., Glahn, D. C., Grabe, H. J., Gruber, O., Hardy, J., Hashimoto, R., Hulshoff Pol, H. E., Jönsson, E. G., Kloszewska, I., Lovestone, S., Mattay, V. S., Mecocci, P., McDonald, C., McIntosh, A. M., Ophoff, R. A., Paus, T., Pausova, Z., Ryten, M., Sachdev, P. S., Saykin, A. J., Simmons, A., Singleton, A., Soininen, H., Wardlaw, J. M., Weale, M. E., Weinberger, D. R., Adams, H. H. H., Launer, L. J., Seiler, S., Schmidt, R., Chauhan, G., Satizabal, C. L., Becker, J. T., Yanek, L., van der Lee, S. J., Ebling, M., Fischl, B., Longstreth, W. T., Greve, D., Schmidt, H., Nyquist, P., Vinke, L. N., Van Duijn, C. M., Xue, L., Mazoyer, B., Bis, J. C., Gudnason, V., Seshadri, S., Ikram, M. A., The Alzheimer’s Disease Neuroimaging Initiative, The CHARGE Consortium, EPIGEN, IMAGEN, SYS, Martin, N. G., Wright, M. J., Schumann, G., Franke, B., Thompson, P. M., & Medland, S. E. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520, 224-229. doi:10.1038/nature14101.

    Abstract

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10-33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction

    Files private

    Request files
  • Karlebach, G., & Francks, C. (2015). Lateralization of gene expression in human language cortex. Cortex, 67, 30-36. doi:10.1016/j.cortex.2015.03.003.

    Abstract

    Lateralization is an important aspect of the functional brain architecture for language and other cognitive faculties. The molecular genetic basis of human brain lateralization is unknown, and recent studies have suggested that gene expression in the cerebral cortex is bilaterally symmetrical. Here we have re-analyzed two transcriptomic datasets derived from post mortem human cerebral cortex, with a specific focus on superior temporal and auditory language cortex in adults. We applied an empirical Bayes approach to model differential left-right expression, together with gene ontology analysis and meta-analysis. There was robust and reproducible lateralization of individual genes and gene ontology groups that are likely to fine-tune the electrophysiological and neurotransmission properties of cortical circuits, most notably synaptic transmission, nervous system development and glutamate receptor activity. Our findings anchor the cerebral biology of language to the molecular genetic level. Future research in model systems may determine how these molecular signatures of neurophysiological lateralization effect fine-tuning of cerebral cortical function, differently in the two hemispheres.
  • Villanueva, P., Nudel, R., Hoischen, A., Fernández, M. A., Simpson, N. H., Gilissen, C., Reader, R. H., Jara, L., Echeverry, M., Francks, C., Baird, G., Conti-Ramsden, G., O’Hare, A., Bolton, P., Hennessy, E. R., the SLI Consortium, Palomino, H., Carvajal-Carmona Veltman J.A., L., Veltman, J. A., Cazier, J.-B. and 3 moreVillanueva, P., Nudel, R., Hoischen, A., Fernández, M. A., Simpson, N. H., Gilissen, C., Reader, R. H., Jara, L., Echeverry, M., Francks, C., Baird, G., Conti-Ramsden, G., O’Hare, A., Bolton, P., Hennessy, E. R., the SLI Consortium, Palomino, H., Carvajal-Carmona Veltman J.A., L., Veltman, J. A., Cazier, J.-B., De Barbieri, Z., Fisher, S. E., & Newbury, D. (2015). Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for Specific Language Impairment. PLoS Genetics, 11(3): e1004925. doi:10.1371/journal.pgen.1004925.
  • Francks, C., DeLisi, L. E., Fisher, S. E., Laval, S. H., Rue, J. E., Stein, J. F., & Monaco, A. P. (2003). Confirmatory evidence for linkage of relative hand skill to 2p12-q11 [Letter to the editor]. American Journal of Human Genetics, 72(2), 499-502. doi:10.1086/367548.
  • Francks, C., Fisher, S. E., Marlow, A. J., MacPhie, I. L., Taylor, K. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Familial and genetic effects on motor coordination, laterality, and reading-related cognition. American Journal of Psychiatry, 160(11), 1970-1977. doi:10.1176/appi.ajp.160.11.1970.

    Abstract

    OBJECTIVE: Recent research has provided evidence for a genetically mediated association between language or reading-related cognitive deficits and impaired motor coordination. Other studies have identified relationships between lateralization of hand skill and cognitive abilities. With a large sample, the authors aimed to investigate genetic relationships between measures of reading-related cognition, hand motor skill, and hand skill lateralization.

    METHOD: The authors applied univariate and bivariate correlation and familiality analyses to a range of measures. They also performed genomewide linkage analysis of hand motor skill in a subgroup of 195 sibling pairs.

    RESULTS: Hand motor skill was significantly familial (maximum heritability=41%), as were reading-related measures. Hand motor skill was weakly but significantly correlated with reading-related measures, such as nonword reading and irregular word reading. However, these correlations were not significantly familial in nature, and the authors did not observe linkage of hand motor skill to any chromosomal regions implicated in susceptibility to dyslexia. Lateralization of hand skill was not correlated with reading or cognitive ability.

    CONCLUSIONS: The authors confirmed a relationship between lower motor ability and poor reading performance. However, the genetic effects on motor skill and reading ability appeared to be largely or wholly distinct, suggesting that the correlation between these traits may have arisen from environmental influences. Finally, the authors found no evidence that reading disability and/or low general cognitive ability were associated with ambidexterity.
  • Francks, C., DeLisi, L. E., Shaw, S. H., Fisher, S. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Human Molecular Genetics, 12(24), 3225-3230. doi:10.1093/hmg/ddg362.

    Abstract

    Schizophrenia and non-right-handedness are moderately associated, and both traits are often accompanied by abnormalities of asymmetrical brain morphology or function. We have found linkage previously of chromosome 2p12-q11 to a quantitative measure of handedness, and we have also found linkage of schizophrenia/schizoaffective disorder to this same chromosomal region in a separate study. Now, we have found that in one of our samples (191 reading-disabled sibling pairs), the relative hand skill of siblings was correlated more strongly with paternal than maternal relative hand skill. This led us to re-analyse 2p12-q11 under parent-of-origin linkage models. We found linkage of relative hand skill in the RD siblings to 2p12-q11 with P=0.0000037 for paternal identity-by-descent sharing, whereas the maternally inherited locus was not linked to the trait (P>0.2). Similarly, in affected-sib-pair analysis of our schizophrenia dataset (241 sibling pairs), we found linkage to schizophrenia for paternal sharing with LOD=4.72, P=0.0000016, within 3 cM of the peak linkage to relative hand skill. Maternal linkage across the region was weak or non-significant. These similar paternal-specific linkages suggest that the causative genetic effects on 2p12-q11 are related. The linkages may be due to a single maternally imprinted influence on lateralized brain development that contains common functional polymorphisms.
  • Marlow, A. J., Fisher, S. E., Francks, C., MacPhie, I. L., Cherny, S. S., Richardson, A. J., Talcott, J. B., Stein, J. F., Monaco, A. P., & Cardon, L. R. (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait. American Journal of Human Genetics, 72(3), 561-570. doi:10.1086/368201.

    Abstract

    Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits.
  • Ogdie, M. N., MacPhie, I. L., Minassian, S. L., Yang, M., Fisher, S. E., Francks, C., Cantor, R. M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2003). A genomewide scan for Attention-Deficit/Hyperactivity Disorder in an extended sample: Suggestive linkage on 17p11. American Journal of Human Genetics, 72(5), 1268-1279. doi:10.1086/375139.

    Abstract

    Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is a common, highly heritable neurobehavioral disorder of childhood onset, characterized by hyperactivity, impulsivity, and/or inattention. As part of an ongoing study of the genetic etiology of ADHD, we have performed a genomewide linkage scan in 204 nuclear families comprising 853 individuals and 270 affected sibling pairs (ASPs). Previously, we reported genomewide linkage analysis of a “first wave” of these families composed of 126 ASPs. A follow-up investigation of one region on 16p yielded significant linkage in an extended sample. The current study extends the original sample of 126 ASPs to 270 ASPs and provides linkage analyses of the entire sample, using polymorphic microsatellite markers that define an ∼10-cM map across the genome. Maximum LOD score (MLS) analysis identified suggestive linkage for 17p11 (MLS=2.98) and four nominal regions with MLS values >1.0, including 5p13, 6q14, 11q25, and 20q13. These data, taken together with the fine mapping on 16p13, suggest two regions as highly likely to harbor risk genes for ADHD: 16p13 and 17p11. Interestingly, both regions, as well as 5p13, have been highlighted in genomewide scans for autism.

Share this page