Clyde Francks

Publications

Displaying 1 - 13 of 13
  • Devanna, P., Chen, X. S., Ho, J., Gajewski, D., Smith, S. D., Gialluisi, A., Francks, C., Fisher, S. E., Newbury, D. F., & Vernes, S. C. (2018). Next-gen sequencing identifies non-coding variation disrupting miRNA binding sites in neurological disorders. Molecular Psychiatry, 23(5), 1375-1384. doi:10.1038/mp.2017.30.

    Abstract

    Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3′UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease

    Additional information

    mp201730x1.docx
  • Kong, X., Mathias, S. R., Guadalupe, T., ENIGMA Laterality Working Group, Glahn, D. C., Franke, B., Crivello, F., Tzourio-Mazoyer, N., Fisher, S. E., Thompson, P. M., & Francks, C. (2018). Mapping Cortical Brain Asymmetry in 17,141 Healthy Individuals Worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 115(22), E5154-E5163. doi:10.1073/pnas.1718418115.

    Abstract

    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (N = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.

    Additional information

    pnas.1718418115.sapp.pdf
  • De Kovel, C. G. F., Lisgo, S. N., Fisher, S. E., & Francks, C. (2018). Subtle left-right asymmetry of gene expression profiles in embryonic and foetal human brains. Scientific Reports, 8: 12606. doi:10.1038/s41598-018-29496-2.

    Abstract

    Left-right laterality is an important aspect of human –and in fact all vertebrate– brain organization for which the genetic basis is poorly understood. Using RNA sequencing data we contrasted gene expression in left- and right-sided samples from several structures of the anterior central nervous systems of post mortem human embryos and foetuses. While few individual genes stood out as significantly lateralized, most structures showed evidence of laterality of their overall transcriptomic profiles. These left-right differences showed overlap with age-dependent changes in expression, indicating lateralized maturation rates, but not consistently in left-right orientation over all structures. Brain asymmetry may therefore originate in multiple locations, or if there is a single origin, it is earlier than 5 weeks post conception, with structure-specific lateralized processes already underway by this age. This pattern is broadly consistent with the weak correlations reported between various aspects of adult brain laterality, such as language dominance and handedness.
  • De Kovel, C. G. F., Lisgo, S. N., & Francks, C. (2018). Transcriptomic analysis of left-right differences in human embryonic forebrain and midbrain. Scientific Data, 5: 180164. doi:10.1038/sdata.2018.164.

    Abstract

    Left-right asymmetry is subtle but pervasive in the human central nervous system. This asymmetry is initiated early during development, but its mechanisms are poorly known. Forebrains and midbrains were dissected from six human embryos at Carnegie stages 15 or 16, one of which was female. The structures were divided into left and right sides, and RNA was isolated. RNA was sequenced with 100 base-pair paired ends using Illumina Hiseq 4000. After quality control, five paired brain sides were available for midbrain and forebrain. A paired analysis between left- and right sides of a given brain structure across the embryos identified left-right differences. The dataset, consisting of Fastq files and a read count table, can be further used to study early development of the human brain
  • Adams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S. and 322 moreAdams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beiser, A., Bernard, M., Bis, J. C., Blanken, L. M. E., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chauhan, G., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., Den Braber, A., Doan, N. T., Ehrlich, S., Filippi, I., Ge, T., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Greven, C. U., Grimm, O., Griswold, M. E., Guadalupe, T., Hass, J., Haukvik, U. K., Hilal, S., Hofer, E., Höhn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Karbalai, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee–, P. H., Liao, J., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A., Matarin, M., Mather, K. A., Mattheisen, M., Mazoyer, B., McKay, D. R., McWhirter, R., Milaneschi, Y., Muetzel, R. L., Muñoz Maniega, S., Nho, K., Nugent, A. C., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pappa, I., Pirpamer, L., Pudas, S., Pütz, B., Rajan, K. B., Ramasamy, A., Richards, J. S., Risacher, S. L., Roiz-Santiañez, R., Rommelse, N., Rose, E. J., Royle, N. A., Rundek, T., Sämann, P. G., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Thomson, R., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Vaidya, D., Van der Grond, J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., VanErp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Woldehawariat, G., Wolf, C., Wolfers, T., Xu, B., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Aggarwal, N. T., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, J. T., Becker, D. M., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Chen, C., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Erk, S., Espeseth, T., Evans, D. A., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Grabe, H. J., Green, R. C., Gruber, O., Guelfi, S., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Ikram, M. K., Jack Jr, C. R., Jenkinson, M., Johnson, R., Jönsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Launer, L. J., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Longstreth Jr, W. T., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Srikanth, V., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Tiemeier, H., Toga, A. W., Traynor, B., Troncoso, J., Turner, J. A., Tzourio, C., Uitterlinden, A. G., Valdés Hernández, M. C., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Duijn, C. M., Van Haren, N. E. M., Van 't Ent, D., Van Tol, M.-J., Vardarajan, B. N., Veltman, D. J., Vernooij, M. W., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. E., Weinberger, D. R., Weiner, M. W., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., the Alzheimer's Disease Neuroimaging Initiative, EPIGEN, IMAGEN, SYS, Deary, I. J., DeCarli, C., Schmidt, H., Martin, N. G., De Craen, A. J. M., Wright, M. J., Gudnason, V., Schumann, G., Fornage, M., Franke, B., Debette, S., Medland, S. E., Ikram, M. A., & Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 19, 1569-1582. doi:10.1038/nn.4398.

    Abstract

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late
    life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438
    adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were
    also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.
    We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic
    background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial
    volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes
    involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial
    volume and provide genetic support for theories on brain reserve and brain overgrowth.
  • Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 37(5), 1788-1800. doi:10.1002/hbm.23136.

    Abstract

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations.
  • Carrion Castillo, A., van Bergen, E., Vino, A., van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531-541. doi:10.1111/gbb.12299.

    Abstract

    Recent genome wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In the present study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (p < 10−6 in the original studies) in a new independent population dataset from the Netherlands: known as FIOLA (Familial Influences On Literacy Abilities). This dataset comprised 483 children from 307 nuclear families, plus 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness, and rapid automatized naming. Two SNPs (rs12636438, rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations in respects such as the language of testing, the exact tests used, and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.
  • Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J. and 17 moreFranke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J., Ehrlich, S., Mather, K. A., Turner, J. A., Schwarz, E., Thalamuthu, A., Yao, Y., Ho, Y. Y. W., Martin, N. G., Wright, M. J., Guadalupe, T., Fisher, S. E., Francks, C., Schizophrenia Working Group of the Psychiatric Genomics Consortium, ENIGMA Consortium, O’Donovan, M. C., Thompson, P. M., Neale, B. M., Medland, S. E., & Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 19, 420-431. doi:10.1038/nn.4228.

    Abstract

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders

    Additional information

    Franke_etal_2016_supp1.pdf
  • Gialluisi, A., Visconti, A., Wilcutt, E. G., Smith, S., Pennington, B., Falchi, M., DeFries, J., Olson, R., Francks, C., & Fisher, S. E. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8: 17. doi:10.1186/s11689-016-9147-8.

    Abstract

    Background

    Reading and language skills have overlapping genetic bases, most of which are still unknown. Part of the missing heritability may be caused by copy number variants (CNVs).
    Methods

    In a dataset of children recruited for a history of reading disability (RD, also known as dyslexia) or attention deficit hyperactivity disorder (ADHD) and their siblings, we investigated the effects of CNVs on reading and language performance. First, we called CNVs with PennCNV using signal intensity data from Illumina OmniExpress arrays (~723,000 probes). Then, we computed the correlation between measures of CNV genomic burden and the first principal component (PC) score derived from several continuous reading and language traits, both before and after adjustment for performance IQ. Finally, we screened the genome, probe-by-probe, for association with the PC scores, through two complementary analyses: we tested a binary CNV state assigned for the location of each probe (i.e., CNV+ or CNV−), and we analyzed continuous probe intensity data using FamCNV.
    Results

    No significant correlation was found between measures of CNV burden and PC scores, and no genome-wide significant associations were detected in probe-by-probe screening. Nominally significant associations were detected (p~10−2–10−3) within CNTN4 (contactin 4) and CTNNA3 (catenin alpha 3). These genes encode cell adhesion molecules with a likely role in neuronal development, and they have been previously implicated in autism and other neurodevelopmental disorders. A further, targeted assessment of candidate CNV regions revealed associations with the PC score (p~0.026–0.045) within CHRNA7 (cholinergic nicotinic receptor alpha 7), which encodes a ligand-gated ion channel and has also been implicated in neurodevelopmental conditions and language impairment. FamCNV analysis detected a region of association (p~10−2–10−4) within a frequent deletion ~6 kb downstream of ZNF737 (zinc finger protein 737, uncharacterized protein), which was also observed in the association analysis using CNV calls.
    Conclusions

    These data suggest that CNVs do not underlie a substantial proportion of variance in reading and language skills. Analysis of additional, larger datasets is warranted to further assess the potential effects that we found and to increase the power to detect CNV effects on reading and language.
  • Kavaklioglu, T., Ajmal, M., Hameed, A., & Francks, C. (2016). Whole exome sequencing for handedness in a large and highly consanguineous family. Neuropsychologia, 93, part B, 342-349. doi:10.1016/j.neuropsychologia.2015.11.010.

    Abstract

    Pinpointing genes involved in non-right-handedness has the potential to clarify developmental contributions to human brain lateralization. Major-gene models have been considered for human handedness which allow for phenocopy and reduced penetrance, i.e. an imperfect correspondence between genotype and phenotype. However, a recent genome-wide association scan did not detect any common polymorphisms with substantial genetic effects. Previous linkage studies in families have also not yielded significant findings. Genetic heterogeneity and/or polygenicity are therefore indicated, but it remains possible that relatively rare, or even unique, major-genetic effects may be detectable in certain extended families with many non-right-handed members. Here we applied whole exome sequencing to 17 members from a single, large consanguineous family from Pakistan. Multipoint linkage analysis across all autosomes did not yield clear candidate genomic regions for involvement in the trait and single-point analysis of exomic variation did not yield clear candidate mutations/genes. Any genetic contribution to handedness in this unusual family is therefore likely to have a complex etiology, as at the population level.
  • Fisher, S. E., & Francks, C. (2006). Genes, cognition and dyslexia: Learning to read the genome. Trends in Cognitive Sciences, 10, 250-257. doi:10.1016/j.tics.2006.04.003.

    Abstract

    Studies of dyslexia provide vital insights into the cognitive architecture underpinning both disordered and normal reading. It is well established that inherited factors contribute to dyslexia susceptibility, but only very recently has evidence emerged to implicate specific candidate genes. In this article, we provide an accessible overview of four prominent examples--DYX1C1, KIAA0319, DCDC2 and ROBO1--and discuss their relevance for cognition. In each case correlations have been found between genetic variation and reading impairments, but precise risk variants remain elusive. Although none of these genes is specific to reading-related neuronal circuits, or even to the human brain, they have intriguing roles in neuronal migration or connectivity. Dissection of cognitive mechanisms that subserve reading will ultimately depend on an integrated approach, uniting data from genetic investigations, behavioural studies and neuroimaging.
  • Ogdie, M. N., Bakker, S. C., Fisher, S. E., Francks, C., Yang, M. H., Cantor, R. M., Loo, S. K., Van der Meulen, E., Pearson, P., Buitelaar, J., Monaco, A., Nelson, S. F., Sinke, R. J., & Smalley, S. L. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13 [Letter to the editor]. Molecular Psychiatry, 11, 5-8. doi:10.1038/sj.mp.4001760.
  • Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., Keating, B. J., Taylor, J. M., Hacking, D. F., Scerri, T., Francks, C., Richardson, A. J., Wade-Martins, R., Stein, J. F., Knight, J. C., Copp, A. J., LoTurco, J., & Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659-1666. doi:10.1093/hmg/ddl089.

    Abstract

    Dyslexia is one of the most prevalent childhood cognitive disorders, affecting approximately 5% of school-age children. We have recently identified a risk haplotype associated with dyslexia on chromosome 6p22.2 which spans the TTRAP gene and portions of THEM2 and KIAA0319. Here we show that in the presence of the risk haplotype, the expression of the KIAA0319 gene is reduced but the expression of the other two genes remains unaffected. Using in situ hybridization, we detect a very distinct expression pattern of the KIAA0319 gene in the developing cerebral neocortex of mouse and human fetuses. Moreover, interference with rat Kiaa0319 expression in utero leads to impaired neuronal migration in the developing cerebral neocortex. These data suggest a direct link between a specific genetic background and a biological mechanism leading to the development of dyslexia: the risk haplotype on chromosome 6p22.2 down-regulates the KIAA0319 gene which is required for neuronal migration during the formation of the cerebral neocortex.

Share this page