Displaying 1 - 9 of 9
-
Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2015). A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Molecular Cytogenetics, 8: 69. doi:10.1186/s13039-015-0173-0.
Abstract
Mutations of FOXP2 in 7q31 cause a rare disorder involving speech apraxia, accompanied by expressive and receptive language impairments. A recent report described a child with speech and language deficits, and a genomic rearrangement affecting chromosomes 7 and 11. One breakpoint mapped to 7q31 and, although outside its coding region, was hypothesised to disrupt FOXP2 expression. We identified an element 2 kb downstream of this breakpoint with epigenetic characteristics of an enhancer. We show that this element drives reporter gene expression in human cell-lines. Thus, displacement of this element by translocation may disturb gene expression, contributing to the observed language phenotype. -
Fisher, S. E., & Vernes, S. C. (2015). Genetics and the Language Sciences. Annual Review of Linguistics, 1, 289-310. doi:10.1146/annurev-linguist-030514-125024.
Abstract
Theories addressing the biological basis of language must be built on
an appreciation of the ways that molecular and neurobiological substrates
can contribute to aspects of human cognition. Here, we lay out
the principles by which a genome could potentially encode the necessary
information to produce a language-ready brain. We describe
what genes are; how they are regulated; and how they affect the formation,
function, and plasticity of neuronal circuits. At each step,
we give examples of molecules implicated in pathways that are important
for speech and language. Finally, we discuss technological advances
in genomics that are revealing considerable genotypic variation in
the human population, from rare mutations to common polymorphisms,
with the potential to relate this variation to natural variability
in speech and language skills. Moving forward, an interdisciplinary
approach to the language sciences, integrating genetics, neurobiology,
psychology, and linguistics, will be essential for a complete understanding
of our unique human capacities. -
Rodenas-Cuadrado, P., Chen, X. S., Wiegrebe, L., Firzlaff, U., & Vernes, S. C. (2015). A novel approach identifies the first transcriptome networks in bats: A new genetic model for vocal communication. BMC Genomics, 16: 836. doi:10.1186/s12864-015-2068-1.
Abstract
Background Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. Results Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. Conclusion We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.Additional information
Raw reads from the RNA sequencing in NCBI bioproject repository -
Van Rhijn, J. R., & Vernes, S. C. (2015). Retinoic acid signaling: A new piece in the spoken language puzzle. Frontiers in Psychology, 6: 1816. doi:10.3389/fpsyg.2015.01816.
Abstract
Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms that encode these pathways will shed light on how humans can effortlessly and innately use spoken language and could elucidate what goes wrong in speech-language disorders.
FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that also includes receptive and expressive language impairments. The underlying neuro-molecular mechanisms controlled by FOXP2, which will give insight into our capacity for speech-motor control, are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid signaling and to modify the cellular response to retinoic acid, a key regulator of brain development. Herein we explore the evidence that FOXP2 and retinoic acid signaling function in the same pathways. We present evidence at molecular, cellular and behavioral levels that suggest an interplay between FOXP2 and retinoic acid that may be important for fine motor control and speech-motor output.
We propose that retinoic acid signaling is an exciting new angle from which to investigate how neurogenetic mechanisms can contribute to the (spoken) language ready brain. -
Devanna, P., & Vernes, S. C. (2014). A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Scientific Reports, 4: 3994. doi:10.1038/srep03994.
Abstract
Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes -
Devanna, P., Middelbeek, J., & Vernes, S. C. (2014). FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Frontiers in Cellular Neuroscience, 8: 305. doi:10.3389/fncel.2014.00305.
Abstract
FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells -
Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: Complex functions to complex disorders. European Journal of Human Genetics, 22(2), 171-178. doi:10.1038/ejhg.2013.100.
Abstract
The genetic basis of complex neurological disorders involving language are poorly understood, partly due to the multiple additive genetic risk factors that are thought to be responsible. Furthermore, these conditions are often syndromic in that they have a range of endophenotypes that may be associated with the disorder and that may be present in different combinations in patients. However, the emergence of individual genes implicated across multiple disorders has suggested that they might share similar underlying genetic mechanisms. The CNTNAP2 gene is an excellent example of this, as it has recently been implicated in a broad range of phenotypes including autism spectrum disorder (ASD), schizophrenia, intellectual disability, dyslexia and language impairment. This review considers the evidence implicating CNTNAP2 in these conditions, the genetic risk factors and mutations that have been identified in patient and population studies and how these relate to patient phenotypes. The role of CNTNAP2 is examined in the context of larger neurogenetic networks during development and disorder, given what is known regarding the regulation and function of this gene. Understanding the role of CNTNAP2 in diverse neurological disorders will further our understanding of how combinations of individual genetic risk factors can contribute to complex conditions -
Vernes, S. C. (2014). Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports, 4: 4412. doi:10.1038/srep04412.
Abstract
The fruitless gene (fru) encodes a set of transcription factors (Fru) that display sexually dimorphic gene expression in the brain of the fruit-fly;Drosophila melanogaster . Behavioural studies have demonstrated that fru isessentialforcourtshipbehaviour inthemale flyandisthoughttoact bydirectingthe development of sex-specific neural circuitry that encodes this innate behavioural response. This study reports the identification of direct regulatory targets of the sexually dimorphic isoforms of the Fru protein using an in vitro model system. Genome wide binding sites were identified for each of the isoforms using Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-Seq). Putative target genes were found to be involved in processes such as neurotransmission, ion-channel signalling and neuron development. All isoforms showed asignificant bias towards genes located on the X-chromosome,which may reflect a specific role for Fru in regulating x-linked genes. Taken together with expression analysis carried out in Fru positive neurons specifically isolated from the male fly brain, it appears that the Fru protein acts as a transcriptional activator. Understanding the regulatory cascades induced by Fru will help to shed light on the molecular mechanisms that are important for specification of neural circuitry underlying complex behaviourAdditional information
http://staging-www.nature.com/srep/2014/140319/srep04412/full/srep04412.html#su… -
Johns, T. G., Perera, R. M., Vitali, A. A., Vernes, S. C., & Scott, A. (2004). Phosphorylation of a glioma-specific mutation of the EGFR [Abstract]. Neuro-Oncology, 6, 317.
Abstract
Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies specific for different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every yrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation at tyrosine 845 could be stimulated in vitro by the addition of specific components of the ECM via an integrindependent mechanism. These observations may partially explain why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment
Share this page