Publications

Displaying 1 - 7 of 7
  • Morales, A. E., Dong, Y., Brown, T., Baid, K., Kontopoulos, D.-.-G., Gonzalez, V., Huang, Z., Ahmed, A.-W., Bhuinya, A., Hilgers, L., Winkler, S., Hughes, G., Li, X., Lu, P., Yang, Y., Kirilenko, B. M., Devanna, P., Lama, T. M., Nissan, Y., Pippel, M. Morales, A. E., Dong, Y., Brown, T., Baid, K., Kontopoulos, D.-.-G., Gonzalez, V., Huang, Z., Ahmed, A.-W., Bhuinya, A., Hilgers, L., Winkler, S., Hughes, G., Li, X., Lu, P., Yang, Y., Kirilenko, B. M., Devanna, P., Lama, T. M., Nissan, Y., Pippel, M., Dávalos, L. M., Vernes, S. C., Puechmaille, S. J., Rossiter, S. J., Yovel, Y., Prescott, J. B., Kurth, A., Ray, D. A., Lim, B. K., Myers, E., Teeling, E. C., Banerjee, A., Irving, A. T., & Hiller, M. (2025). Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature, 638, 449-458. doi:10.1038/s41586-024-08471-0.

    Abstract

    Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.

    Additional information

    supplementary information
  • Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2015). A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Molecular Cytogenetics, 8: 69. doi:10.1186/s13039-015-0173-0.

    Abstract

    Mutations of FOXP2 in 7q31 cause a rare disorder involving speech apraxia, accompanied by expressive and receptive language impairments. A recent report described a child with speech and language deficits, and a genomic rearrangement affecting chromosomes 7 and 11. One breakpoint mapped to 7q31 and, although outside its coding region, was hypothesised to disrupt FOXP2 expression. We identified an element 2 kb downstream of this breakpoint with epigenetic characteristics of an enhancer. We show that this element drives reporter gene expression in human cell-lines. Thus, displacement of this element by translocation may disturb gene expression, contributing to the observed language phenotype.
  • Fisher, S. E., & Vernes, S. C. (2015). Genetics and the Language Sciences. Annual Review of Linguistics, 1, 289-310. doi:10.1146/annurev-linguist-030514-125024.

    Abstract

    Theories addressing the biological basis of language must be built on
    an appreciation of the ways that molecular and neurobiological substrates
    can contribute to aspects of human cognition. Here, we lay out
    the principles by which a genome could potentially encode the necessary
    information to produce a language-ready brain. We describe
    what genes are; how they are regulated; and how they affect the formation,
    function, and plasticity of neuronal circuits. At each step,
    we give examples of molecules implicated in pathways that are important
    for speech and language. Finally, we discuss technological advances
    in genomics that are revealing considerable genotypic variation in
    the human population, from rare mutations to common polymorphisms,
    with the potential to relate this variation to natural variability
    in speech and language skills. Moving forward, an interdisciplinary
    approach to the language sciences, integrating genetics, neurobiology,
    psychology, and linguistics, will be essential for a complete understanding
    of our unique human capacities.
  • Rodenas-Cuadrado, P., Chen, X. S., Wiegrebe, L., Firzlaff, U., & Vernes, S. C. (2015). A novel approach identifies the first transcriptome networks in bats: A new genetic model for vocal communication. BMC Genomics, 16: 836. doi:10.1186/s12864-015-2068-1.

    Abstract

    Background Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. Results Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. Conclusion We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.
  • Van Rhijn, J. R., & Vernes, S. C. (2015). Retinoic acid signaling: A new piece in the spoken language puzzle. Frontiers in Psychology, 6: 1816. doi:10.3389/fpsyg.2015.01816.

    Abstract

    Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms that encode these pathways will shed light on how humans can effortlessly and innately use spoken language and could elucidate what goes wrong in speech-language disorders.
    FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that also includes receptive and expressive language impairments. The underlying neuro-molecular mechanisms controlled by FOXP2, which will give insight into our capacity for speech-motor control, are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid signaling and to modify the cellular response to retinoic acid, a key regulator of brain development. Herein we explore the evidence that FOXP2 and retinoic acid signaling function in the same pathways. We present evidence at molecular, cellular and behavioral levels that suggest an interplay between FOXP2 and retinoic acid that may be important for fine motor control and speech-motor output.
    We propose that retinoic acid signaling is an exciting new angle from which to investigate how neurogenetic mechanisms can contribute to the (spoken) language ready brain.
  • Johns, T. G., Vitali, A. A., Perera, R. M., Vernes, S. C., & Scott, A. M. (2005). Ligand-independent activation of the EGFRvIII: A naturally occurring mutation of the EGFR commonly expressed in glioma [Abstract]. Neuro-Oncology, 7, 299.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2–7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We have now mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies unique to the different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed both in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every tyrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation could be mimicked in vitro by the addition of specifi c components of the ECM such as collagen via an integrin-dependent mechanism. Since this increase in in vivo phosphorylation enhances de2-7 EGFR signaling, this observation explains why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment. In a second set of experiments we analyzed the interaction between EGFRvIII and ErbB2. Co-expression of these proteins in NR6 cells, a mouse fi broblast line devoid of ErbB family members, dramatically enhanced in vivo tumorigenicity of these cells compared to cells expressing either protein alone. Detailed analysis of these xenografts demonstrated that EGFRvIII could heterodimerize and transphosphorylate the ErbB2. Since both EGFRvIII and ErbB2 are commonly expressed at gliomas, this data suggests that the co-expression of these two proteins may enhance glioma tumorigenicity.
  • MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A.-M., Lai, C. S. L., Vernes, S. C., Vargha-Khadem, F., McKenzie, F., Smith, R. L., Monaco, A. P., & Fisher, S. E. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76(6), 1074-1080. doi:10.1086/430841.

    Abstract

    FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearrangements involving this locus have also been identified. Analyses of FOXP2 coding sequence in typical forms of specific language impairment (SLI), autism, and dyslexia have not uncovered any etiological variants. However, no previous study has performed mutation screening of children with a primary diagnosis of verbal dyspraxia, the most overt feature of the disorder in affected members of the KE family. Here, we report investigations of the entire coding region of FOXP2, including alternatively spliced exons, in 49 probands affected with verbal dyspraxia. We detected variants that alter FOXP2 protein sequence in three probands. One such variant is a heterozygous nonsense mutation that yields a dramatically truncated protein product and cosegregates with speech and language difficulties in the proband, his affected sibling, and their mother. Our discovery of the first nonsense mutation in FOXP2 now opens the door for detailed investigations of neurodevelopment in people carrying different etiological variants of the gene. This endeavor will be crucial for gaining insight into the role of FOXP2 in human cognition.

Share this page