Publications

Displaying 1 - 2 of 2
  • Walker, R. M., Hill, A. E., Newman, A. C., Hamilton, G., Torrance, H. S., Anderson, S. M., Ogawa, F., Derizioti, P., Nicod, J., Vernes, S. C., Fisher, S. E., Thomson, P. A., Porteous, D. J., & Evans, K. L. (2012). The DISC1 promoter: Characterization and regulation by FOXP2. Human Molecular Genetics, 21, 2862-2872. doi:10.1093/hmg/dds111.

    Abstract

    Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder, and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterisation of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300bp to -177bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, whilst a region -982bp to -301bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by FOXP2, a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia (DVD). Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.
  • Vernes, S. C., Nicod, J., Elahi, F. M., Coventry, J. A., Kenny, N., Coupe, A.-M., Bird, L. E., Davies, K. E., & Fisher, S. E. (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 15(21), 3154-3167. doi:10.1093/hmg/ddl392.

    Abstract

    Mutations in the FOXP2 gene cause a severe communication disorder involving speech deficits (developmental verbal dyspraxia), accompanied by wide-ranging impairments in expressive and receptive language. The protein encoded by FOXP2 belongs to a divergent subgroup of forkhead-box transcription factors, with a distinctive DNA-binding domain and motifs that mediate hetero- and homodimerization. Here we report the first direct functional genetic investigation of missense and nonsense mutations in FOXP2 using human cell-lines, including a well-established neuronal model system. We focused on three unusual FOXP2 coding variants, uniquely identified in cases of verbal dyspraxia, assessing expression, subcellular localization, DNA-binding and transactivation properties. Analysis of the R553H forkhead-box substitution, found in all affected members of a large three-generation family, indicated that it severely affects FOXP2 function, chiefly by disrupting nuclear localization and DNA-binding properties. The R328X truncation mutation, segregating with speech/language disorder in a second family, yields an unstable, predominantly cytoplasmic product that lacks transactivation capacity. A third coding variant (Q17L) observed in a single affected child did not have any detectable functional effect in the present study. In addition, we used the same systems to explore the properties of different isoforms of FOXP2, resulting from alternative splicing in human brain. Notably, one such isoform, FOXP2.10+, contains dimerization domains, but no DNA-binding domain, and displayed increased cytoplasmic localization, coupled with aggresome formation. We hypothesize that expression of alternative isoforms of FOXP2 may provide mechanisms for post-translational regulation of transcription factor function.

Share this page