Displaying 1 - 10 of 10
-
Anijs, M., Devanna, P., & Vernes, S. C. (2022). ARHGEF39, a gene implicated in developmental language disorder, activates RHOA and is involved in cell de-adhesion and neural progenitor cell proliferation. Frontiers in Molecular Neuroscience, 15: 941494. doi:10.3389/fnmol.2022.941494.
Abstract
ARHGEF39 was previously implicated in developmental language disorder (DLD) via a functional polymorphism that can disrupt post-transcriptional regulation by microRNAs. ARHGEF39 is part of the family of Rho guanine nucleotide exchange factors (RhoGEFs) that activate small Rho GTPases to regulate a wide variety of cellular processes. However, little is known about the function of ARHGEF39, or how its function might contribute to neurodevelopment or related disorders. Here, we explore the molecular function of ARHGEF39 and show that it activates the Rho GTPase RHOA and that high ARHGEF39 expression in cell cultures leads to an increase of detached cells. To explore its role in neurodevelopment, we analyse published single cell RNA-sequencing data and demonstrate that ARHGEF39 is a marker gene for proliferating neural progenitor cells and that it is co-expressed with genes involved in cell division. This suggests a role for ARHGEF39 in neurogenesis in the developing brain. The co-expression of ARHGEF39 with other RHOA-regulating genes supports RHOA as substrate of ARHGEF39 in neural cells, and the involvement of RHOA in neuropsychiatric disorders highlights a potential link between ARHGEF39 and neurodevelopment and disorder. Understanding the GTPase substrate, co-expression network, and processes downstream of ARHGEF39 provide new avenues for exploring the mechanisms by which altered expression levels of ARHGEF39 may contribute to neurodevelopment and associated disorders. -
Doronina, L., Hughes, G. M., Moreno-Santillan, D., Lawless, C., Lonergan, T., Ryan, L., Jebb, D., Kirilenko, B. M., Korstian, J. M., Dávalos, L. M., Vernes, S. C., Myers, E. W., Teeling, E. C., Hiller, M., Jermiin, L. S., Schmitz, J., Springer, M. S., & Ray, D. A. (2022). Contradictory phylogenetic signals in the laurasiatheria anomaly zone. Genes, 13(5): 766. doi:10.3390/genes13050766.
Abstract
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade. -
Formenti, G., Theissinger, K., Fernandes, C., Bista, I., Bombarely, A., Bleidorn, C., Ciofi, C., Crottini, A., Godoy, J. A., Höglund, J., Malukiewicz, J., Mouton, A., Oomen, R. A., Sadye, P., Palsbøll, P. J., Pampoulie, C., Ruiz-López, M. J., Svardal, H., Theofanopoulou, C., De Vries, J. and 6 moreFormenti, G., Theissinger, K., Fernandes, C., Bista, I., Bombarely, A., Bleidorn, C., Ciofi, C., Crottini, A., Godoy, J. A., Höglund, J., Malukiewicz, J., Mouton, A., Oomen, R. A., Sadye, P., Palsbøll, P. J., Pampoulie, C., Ruiz-López, M. J., Svardal, H., Theofanopoulou, C., De Vries, J., Waldvogel, A.-M., Zhang, G., Mazzoni, C. J., Jarvis, E. D., Bálint, M., & European Reference Genome Atlas (ERGA) Consortium (2022). The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 37(3), 197-202. doi:10.1016/j.tree.2021.11.008.
Abstract
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics. -
Hoeksema, N., Hagoort, P., & Vernes, S. C. (2022). Piecing together the building blocks of the vocal learning bat brain. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 294-296). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Vernes, S. C., Devanna, P., Hörpel, S. G., Alvarez van Tussenbroek, I., Firzlaff, U., Hagoort, P., Hiller, M., Hoeksema, N., Hughes, G. M., Lavrichenko, K., Mengede, J., Morales, A. E., & Wiesmann, M. (2022). The pale spear‐nosed bat: A neuromolecular and transgenic model for vocal learning. Annals of the New York Academy of Sciences, 1517, 125-142. doi:10.1111/nyas.14884.
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.Additional information
supplementary materials -
Vernes, S. C. (2017). What bats have to say about speech and language. Psychonomic Bulletin & Review, 24(1), 111-117. doi:10.3758/s13423-016-1060-3.
Abstract
Understanding the biological foundations of language is vital to gaining insight into how the capacity for language may have evolved in humans. Animal models can be exploited to learn about the biological underpinnings of shared human traits, and although no other animals display speech or language, a range of behaviors found throughout the animal kingdom are relevant to speech and spoken language. To date, such investigations have been dominated by studies of our closest primate relatives searching for shared traits, or more distantly related species that are sophisticated vocal communicators, like songbirds. Herein I make the case for turning our attention to the Chiropterans, to shed new light on the biological encoding and evolution of human language-relevant traits. Bats employ complex vocalizations to facilitate navigation as well as social interactions, and are exquisitely tuned to acoustic information. Furthermore, bats display behaviors such as vocal learning and vocal turn-taking that are directly pertinent for human spoken language. Emerging technologies are now allowing the study of bat vocal communication, from the behavioral to the neurobiological and molecular level. Although it is clear that no single animal model can reflect the complexity of human language, by comparing such findings across diverse species we can identify the shared biological mechanisms likely to have influenced the evolution of human language. Keywords -
Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2015). A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Molecular Cytogenetics, 8: 69. doi:10.1186/s13039-015-0173-0.
Abstract
Mutations of FOXP2 in 7q31 cause a rare disorder involving speech apraxia, accompanied by expressive and receptive language impairments. A recent report described a child with speech and language deficits, and a genomic rearrangement affecting chromosomes 7 and 11. One breakpoint mapped to 7q31 and, although outside its coding region, was hypothesised to disrupt FOXP2 expression. We identified an element 2 kb downstream of this breakpoint with epigenetic characteristics of an enhancer. We show that this element drives reporter gene expression in human cell-lines. Thus, displacement of this element by translocation may disturb gene expression, contributing to the observed language phenotype. -
Fisher, S. E., & Vernes, S. C. (2015). Genetics and the Language Sciences. Annual Review of Linguistics, 1, 289-310. doi:10.1146/annurev-linguist-030514-125024.
Abstract
Theories addressing the biological basis of language must be built on
an appreciation of the ways that molecular and neurobiological substrates
can contribute to aspects of human cognition. Here, we lay out
the principles by which a genome could potentially encode the necessary
information to produce a language-ready brain. We describe
what genes are; how they are regulated; and how they affect the formation,
function, and plasticity of neuronal circuits. At each step,
we give examples of molecules implicated in pathways that are important
for speech and language. Finally, we discuss technological advances
in genomics that are revealing considerable genotypic variation in
the human population, from rare mutations to common polymorphisms,
with the potential to relate this variation to natural variability
in speech and language skills. Moving forward, an interdisciplinary
approach to the language sciences, integrating genetics, neurobiology,
psychology, and linguistics, will be essential for a complete understanding
of our unique human capacities. -
Rodenas-Cuadrado, P., Chen, X. S., Wiegrebe, L., Firzlaff, U., & Vernes, S. C. (2015). A novel approach identifies the first transcriptome networks in bats: A new genetic model for vocal communication. BMC Genomics, 16: 836. doi:10.1186/s12864-015-2068-1.
Abstract
Background Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. Results Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. Conclusion We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.Additional information
Raw reads from the RNA sequencing in NCBI bioproject repository -
Van Rhijn, J. R., & Vernes, S. C. (2015). Retinoic acid signaling: A new piece in the spoken language puzzle. Frontiers in Psychology, 6: 1816. doi:10.3389/fpsyg.2015.01816.
Abstract
Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms that encode these pathways will shed light on how humans can effortlessly and innately use spoken language and could elucidate what goes wrong in speech-language disorders.
FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that also includes receptive and expressive language impairments. The underlying neuro-molecular mechanisms controlled by FOXP2, which will give insight into our capacity for speech-motor control, are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid signaling and to modify the cellular response to retinoic acid, a key regulator of brain development. Herein we explore the evidence that FOXP2 and retinoic acid signaling function in the same pathways. We present evidence at molecular, cellular and behavioral levels that suggest an interplay between FOXP2 and retinoic acid that may be important for fine motor control and speech-motor output.
We propose that retinoic acid signaling is an exciting new angle from which to investigate how neurogenetic mechanisms can contribute to the (spoken) language ready brain.
Share this page