Arianna Vino

Publications

Displaying 1 - 4 of 4
  • Estruch, S. B., Graham, S. A., Quevedo, M., Vino, A., Dekkers, D. H. W., Deriziotis, P., Sollis, E., Demmers, J., Poot, R. A., & Fisher, S. E. (2018). Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Human Molecular Genetics, 27(7), 1212-1227. doi:10.1093/hmg/ddy035.

    Abstract

    FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-established roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.
  • Tilot, A. K., Kucera, K. S., Vino, A., Asher, J. E., Baron-Cohen, S., & Fisher, S. E. (2018). Rare variants in axonogenesis genes connect three families with sound–color synesthesia. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3168-3173. doi:10.1073/pnas.1715492115.

    Abstract

    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound–color (auditory–visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes—COL4A1, ITGA2, MYO10, ROBO3, SLC9A6, and SLIT2—associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences.

    Additional information

    Tilot_etal_2018SI.pdf
  • Dagklis, A., Ponzoni, M., Govi, S., Cangi, M. G., Pasini, E., Charlotte, F., Vino, A., Doglioni, C., Davi, F., Lossos, I. S., Ntountas, I., Papadaki, T., Dolcetti, R., Ferreri, A. J. M., Stamatopoulos, K., & Ghia, P. (2012). Immunoglobulin gene repertoire in ocular adnexal lymphomas: hints on the nature of the antigenic stimulation. Leukemia, 26, 814-821. doi:10.1038/leu.2011.276.

    Abstract

    Evidence from certain geographical areas links lymphomas of the ocular adnexa marginal zone B-cell lymphomas (OAMZL) with Chlamydophila psittaci (Cp) infection, suggesting that lymphoma development is dependent upon chronic stimulation by persistent infections. Notwithstanding that, the actual immunopathogenetical mechanisms have not yet been elucidated. As in other B-cell lymphomas, insight into this issue, especially with regard to potential selecting ligands, could be provided by analysis of the immunoglobulin (IG) receptors of the malignant clones. To this end, we studied the molecular features of IGs in 44 patients with OAMZL (40% Cp-positive), identifying features suggestive of a pathogenic mechanism of autoreactivity. Herein, we show that lymphoma cells express a distinctive IG repertoire, with electropositive antigen (Ag)-binding sites, reminiscent of autoantibodies (auto-Abs) recognizing DNA. Additionally, five (11%) cases of OAMZL expressed IGs homologous with autoreactive Abs or IGs of patients with chronic lymphocytic leukemia, a disease known for the expression of autoreactive IGs by neoplastic cells. In contrast, no similarity with known anti-Chlamydophila Abs was found. Taken together, these results strongly indicate that OAMZL may originate from B cells selected for their capability to bind Ags and, in particular, auto-Ags. In OAMZL associated with Cp infection, the pathogen likely acts indirectly on the malignant B cells, promoting the development of an inflammatory milieu, where auto-Ags could be exposed and presented, driving proliferation and expansion of self-reactive B cells.
  • Ferreri, A., Ponzoni, M., Govi, S., Pasini, E., Mappa, S., Vino, A., Facchetti, F., Vezzoli, P., Doglioni, C., Berti, E., & Dolcetti, R. (2012). Prevalence of chlamydial infection in a series of 108 primary cutaneous lymphomas. British Journal of Dermatology, 166(5), 1121-1123. doi:10.1111/j.1365-2133.2011.10704.x.

Share this page