Limor Raviv

Publications

Displaying 1 - 18 of 18
  • Cheung, C.-Y., Kirby, S., & Raviv, L. (2024). The role of gender, social bias and personality traits in shaping linguistic accommodation: An experimental approach. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 80-82). Nijmegen: The Evolution of Language Conferences. doi:10.17617/2.3587960.
  • Dang, A., Raviv, L., & Galke, L. (2024). Testing the linguistic niche hypothesis in large with a multilingual Wug test. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 91-93). Nijmegen: The Evolution of Language Conferences.
  • Dang, A., Raviv, L., & Galke, L. (2024). Morphology matters: Probing the cross-linguistic morphological generalization abilities of large language models through a Wug Test. In CMCL 2024 - 13th Edition of the Workshop on Cognitive Modeling and Computational Linguistics, Proceedings of the Workshop (pp. 177-188). Kerrville, TX, USA: Association for Computational Linguistics (ACL).
  • Galke, L., Ram, Y., & Raviv, L. (2024). Learning pressures and inductive biases in emergent communication: Parallels between humans and deep neural networks. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 197-201). Nijmegen: The Evolution of Language Conferences.
  • Galke, L., Ram, Y., & Raviv, L. (2024). Deep neural networks and humans both benefit from compositional language structure. Nature Communications, 15: 10816. doi:10.1038/s41467-024-55158-1.

    Abstract

    Deep neural networks drive the success of natural language processing. A fundamental property of language is its compositional structure, allowing humans to systematically produce forms for new meanings. For humans, languages with more compositional and transparent structures are typically easier to learn than those with opaque and irregular structures. However, this learnability advantage has not yet been shown for deep neural networks, limiting their use as models for human language learning. Here, we directly test how neural networks compare to humans in learning and generalizing different languages that vary in their degree of compositional structure. We evaluate the memorization and generalization capabilities of a large language model and recurrent neural networks, and show that both deep neural networks exhibit a learnability advantage for more structured linguistic input: neural networks exposed to more compositional languages show more systematic generalization, greater agreement between different agents, and greater similarity to human learners.
  • Grosseck, O., Perlman, M., Ortega, G., & Raviv, L. (2024). The iconic affordances of gesture and vocalization in emerging languages in the lab. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 223-225). Nijmegen: The Evolution of Language Conferences.
  • Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of variation in language evolution. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 286-289). Nijmegen: The Evolution of Language Conferences.
  • Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of language evolution in heterogeneous populations. Cognitive Science: a multidisciplinary journal, 48(11): e70011. doi:10.1111/cogs.70011.

    Abstract

    Variations in language abilities, use, and production style are ubiquitous within any given population. While research on language evolution has traditionally overlooked the potential importance of such individual differences, these can have an important impact on the trajectory of language evolution and ongoing change. To address this gap, we use a group communication game for studying this mechanism in the lab, in which micro-societies of interacting participants develop and use artificial languages to successfully communicate with each other. Importantly, one participant in the group is assigned a keyboard with a limited inventory of letters (simulating a speech impairment that individuals may encounter in real life), forcing them to communicate differently than the rest. We test how languages evolve in such heterogeneous groups and whether they adapt to accommodate the unique characteristics of individuals with language idiosyncrasies. Our results suggest that language evolves differently in groups where some individuals have distinct language abilities, eliciting more innovative elements at the cost of reduced communicative success and convergence. Furthermore, we observed strong partner-specific accommodation to the minority individual, which carried over to the group level. Importantly, the degree of group-wide adaptation was not uniform and depended on participants’ attachment to established language forms. Our findings provide compelling evidence that individual differences can permeate and accumulate within a linguistic community, ultimately driving changes in languages over time. They also underscore the importance of integrating individual differences into future research on language evolution.

    Additional information

    full analyses and plots
  • Lammertink, I., De Heer Kloots, M., Bazioni, M., & Raviv, L. (2024). Learnability effects in children: Are more structured languages easier to learn? In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 320-323). Nijmegen: The Evolution of Language Conferences.
  • Lupyan, G., & Raviv, L. (2024). A cautionary note on sociodemographic predictors of linguistic complexity: Different measures and different analyses lead to different conclusions. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 345-348). Nijmegen: The Evolution of Language Conferences.
  • Motiekaitytė, K., Grosseck, O., Wolf, L., Bosker, H. R., Peeters, D., Perlman, M., Ortega, G., & Raviv, L. (2024). Iconicity and compositionality in emerging vocal communication systems: a Virtual Reality approach. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 387-389). Nijmegen: The Evolution of Language Conferences.
  • Nölle, J., Raviv, L., Graham, K. E., Hartmann, S., Jadoul, Y., Josserand, M., Matzinger, T., Mudd, K., Pleyer, M., Slonimska, A., Wacewicz, S., & Watson, S. (Eds.). (2024). The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV). Nijmegen: The Evolution of Language Conferences. doi:10.17617/2.3587960.
  • Ozaki, Y., Tierney, A., Pfordresher, P. Q., McBride, J., Benetos, E., Proutskova, P., Chiba, G., Liu, F., Jacoby, N., Purdy, S. C., Opondo, P., Fitch, W. T., Hegde, S., Rocamora, M., Thorne, R., Nweke, F., Sadaphal, D. P., Sadaphal, P. M., Hadavi, S., Fujii, S. Ozaki, Y., Tierney, A., Pfordresher, P. Q., McBride, J., Benetos, E., Proutskova, P., Chiba, G., Liu, F., Jacoby, N., Purdy, S. C., Opondo, P., Fitch, W. T., Hegde, S., Rocamora, M., Thorne, R., Nweke, F., Sadaphal, D. P., Sadaphal, P. M., Hadavi, S., Fujii, S., Choo, S., Naruse, M., Ehara, U., Sy, L., Lenini Parselelo, M., Anglada-Tort, M., Hansen, N. C., Haiduk, F., Færøvik, U., Magalhães, V., Krzyżanowski, W., Shcherbakova, O., Hereld, D., Barbosa, B. S., Correa Varella, M. A., Van Tongeren, M., Dessiatnitchenko, P., Zar Zar, S., El Kahla, I., Muslu, O., Troy, J., Lomsadze, T., Kurdova, D., Tsope, C., Fredriksson, D., Arabadjiev, A., Sarbah, J. P., Arhine, A., Ó Meachair, T., Silva-Zurita, J., Soto-Silva, I., Muñoz Millalonco, N. E., Ambrazevičius, R., Loui, P., Ravignani, A., Jadoul, Y., Larrouy-Maestri, P., Bruder, C., Teyxokawa, T. P., Kuikuro, U., Natsitsabui, R., Sagarzazu, N. B., Raviv, L., Zeng, M., Varnosfaderani, S. D., Gómez-Cañón, J. S., Kolff, K., Vanden Bosch der Nederlanden, C., Chhatwal, M., David, R. M., Putu Gede Setiawan, I., Lekakul, G., Borsan, V. N., Nguqu, N., & Savage, P. E. (2024). Globally, songs and instrumental melodies are slower, higher, and use more stable pitches than speech: A Registered Report. Science Advances, 10(20): eadm9797. doi:10.1126/sciadv.adm9797.

    Abstract

    Both music and language are found in all known human societies, yet no studies have compared similarities and differences between song, speech, and instrumental music on a global scale. In this Registered Report, we analyzed two global datasets: (i) 300 annotated audio recordings representing matched sets of traditional songs, recited lyrics, conversational speech, and instrumental melodies from our 75 coauthors speaking 55 languages; and (ii) 418 previously published adult-directed song and speech recordings from 209 individuals speaking 16 languages. Of our six preregistered predictions, five were strongly supported: Relative to speech, songs use (i) higher pitch, (ii) slower temporal rate, and (iii) more stable pitches, while both songs and speech used similar (iv) pitch interval size and (v) timbral brightness. Exploratory analyses suggest that features vary along a “musi-linguistic” continuum when including instrumental melodies and recited lyrics. Our study provides strong empirical evidence of cross-cultural regularities in music and speech.

    Additional information

    supplementary materials
  • de Reus, K., Benítez-Burraco, A., Hersh, T. A., Groot, N., Lambert, M. L., Slocombe, K. E., Vernes, S. C., & Raviv, L. (2024). Self-domestication traits in vocal learning mammals. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 105-108). Nijmegen: The Evolution of Language Conferences.
  • Zhou, H., Van der Ham, S., De Boer, B., Bogaerts, L., & Raviv, L. (2024). Modality and stimulus effects on distributional statistical learning: Sound vs. sight, time vs. space. Journal of Memory and Language, 138: 104531. doi:10.1016/j.jml.2024.104531.

    Abstract

    Statistical learning (SL) is postulated to play an important role in the process of language acquisition as well as in other cognitive functions. It was found to enable learning of various types of statistical patterns across different sensory modalities. However, few studies have distinguished distributional SL (DSL) from sequential and spatial SL, or examined DSL across modalities using comparable tasks. Considering the relevance of such findings to the nature of SL, the current study investigated the modality- and stimulus-specificity of DSL. Using a within-subject design we compared DSL performance in auditory and visual modalities. For each sensory modality, two stimulus types were used: linguistic versus non-linguistic auditory stimuli and temporal versus spatial visual stimuli. In each condition, participants were exposed to stimuli that varied in their length as they were drawn from two categories (short versus long). DSL was assessed using a categorization task and a production task. Results showed that learners’ performance was only correlated for tasks in the same sensory modality. Moreover, participants were better at categorizing the temporal signals in the auditory conditions than in the visual condition, where in turn an advantage of the spatial condition was observed. In the production task participants exaggerated signal length more for linguistic signals than non-linguistic signals. Together, these findings suggest that DSL is modality- and stimulus-sensitive.

    Additional information

    link to preprint
  • Raviv, L., De Heer Kloots, M., & Meyer, A. S. (2021). What makes a language easy to learn? A preregistered study on how systematic structure and community size affect language learnability. Cognition, 210: 104620. doi:10.1016/j.cognition.2021.104620.

    Abstract

    Cross-linguistic differences in morphological complexity could have important consequences for language learning. Specifically, it is often assumed that languages with more regular, compositional, and transparent grammars are easier to learn by both children and adults. Moreover, it has been shown that such grammars are more likely to evolve in bigger communities. Together, this suggests that some languages are acquired faster than others, and that this advantage can be traced back to community size and to the degree of systematicity in the language. However, the causal relationship between systematic linguistic structure and language learnability has not been formally tested, despite its potential importance for theories on language evolution, second language learning, and the origin of linguistic diversity. In this pre-registered study, we experimentally tested the effects of community size and systematic structure on adult language learning. We compared the acquisition of different yet comparable artificial languages that were created by big or small groups in a previous communication experiment, which varied in their degree of systematic linguistic structure. We asked (a) whether more structured languages were easier to learn; and (b) whether languages created by the bigger groups were easier to learn. We found that highly systematic languages were learned faster and more accurately by adults, but that the relationship between language learnability and linguistic structure was typically non-linear: high systematicity was advantageous for learning, but learners did not benefit from partly or semi-structured languages. Community size did not affect learnability: languages that evolved in big and small groups were equally learnable, and there was no additional advantage for languages created by bigger groups beyond their degree of systematic structure. Furthermore, our results suggested that predictability is an important advantage of systematic structure: participants who learned more structured languages were better at generalizing these languages to new, unfamiliar meanings, and different participants who learned the same more structured languages were more likely to produce similar labels. That is, systematic structure may allow speakers to converge effortlessly, such that strangers can immediately understand each other.
  • Raviv, L., & Arnon, I. (2016). The developmental trajectory of children's statistical learning abilities. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 1469-1474). Austin, TX: Cognitive Science Society.

    Abstract

    Infants, children and adults are capable of implicitly extracting regularities from their environment through statistical learning (SL). SL is present from early infancy and found across tasks and modalities, raising questions about the domain generality of SL. However, little is known about its’ developmental trajectory: Is SL fully developed capacity in infancy, or does it improve with age, like other cognitive skills? While SL is well established in infants and adults, only few studies have looked at SL across development with conflicting results: some find age-related improvements while others do not. Importantly, despite its postulated role in language learning, no study has examined the developmental trajectory of auditory SL throughout childhood. Here, we conduct a large-scale study of children's auditory SL across a wide age-range (5-12y, N=115). Results show that auditory SL does not change much across development. We discuss implications for modality-based differences in SL and for its role in language acquisition.
  • Raviv, L., & Arnon, I. (2016). Language evolution in the lab: The case of child learners. In A. Papagrafou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 1643-1648). Austin, TX: Cognitive Science Society.

    Abstract

    Recent work suggests that cultural transmission can lead to the emergence of linguistic structure as speakers’ weak individual biases become amplified through iterated learning. However, to date, no published study has demonstrated a similar emergence of linguistic structure in children. This gap is problematic given that languages are mainly learned by children and that adults may bring existing linguistic biases to the task. Here, we conduct a large-scale study of iterated language learning in both children and adults, using a novel, child-friendly paradigm. The results show that while children make more mistakes overall, their languages become more learnable and show learnability biases similar to those of adults. Child languages did not show a significant increase in linguistic structure over time, but consistent mappings between meanings and signals did emerge on many occasions, as found with adults. This provides the first demonstration that cultural transmission affects the languages children and adults produce similarly.

Share this page